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ABSTRACT 

This thesis provides a stochastic modeling tool to assist in the component 

selection process for Army Aviation’s Condition-Based Maintenance Plus (CBM+) 

program.  The CBM+ program uses measurements from sensors to monitor the health 

(resistance to failure) of components replacing the Legacy process of scheduled 

inspections and maintenance. This work is in conjunction with the Operations Research 

Center of Excellence (ORCEN) at the United States Military Academy to assist in 

providing insight for the U.S. Aviation and Missile Command (AMCOM).  AMCOM is 

currently developing CBM+ from its current early stages into a program that will 

revolutionize maintenance procedures for the Army’s helicopter fleet. 

The subsystem selected for this thesis is the AH-64/UH-60 T701C Turbine 

Helicopter Engine.  The times to occurrences to serious diagnostics symptoms requiring 

maintenance action were collected from the Army’s Aviation and Missile Research, 

Development, and Engineering Center (AMRDEC).  Data analysis indicates that a 

nonhomogeneous Poisson process appropriately models the times between the 

occurrences of serious diagnostic symptoms for this engine.  A Microsoft Excel 

simulation utilizing Crystal Ball version 5.5 compares an engine monitored by CBM+ 

versus the traditional Legacy system of maintenance.  This simulation provides 

information on diagnosed faults, mission aborts, repair times, false positives, and 

logistical implications. 

This simulation is generic and can be used in comparing CBM+ candidate 

components for future inclusion into the CBM+ program. Results suggest that the 

sensor’s false alarm rate and the reliability/maintainability of the CBM+ sensor are 

important factors to consider.  Since the CBM+ sensor is continually monitoring a 

component’s condition, a modest sensor probability of detection of an impending failure 

can result in fewer mission aborts than those that arise in the Legacy system.  The ability 

and speed of the logistics system to recognize and respond to sensor measurements 

indicating impending failure affect the potential success of CBM+. 
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EXECUTIVE SUMMARY 

U.S. Aviation and Missile Command (AMCOM) has initiated a program to 

monitor Army helicopter component health (resistance to failure) through a network of 

sensors installed on aircraft.  This sensor network forms the foundation for a maintenance 

philosophy known as Condition-Based Maintenance Plus (CBM+).  This thesis provides 

a stochastic modeling tool to assist in the component selection process for Army 

Aviation’s CBM+ program.  This work is in conjunction with the Operations Research 

Center of Excellence (ORCEN) at the United States Military Academy to assist in 

providing insight for the U.S. Aviation and Missile Command (AMCOM).  AMCOM is 

currently developing CBM+ from its current early stages into a program that will 

revolutionize maintenance procedures for the Army’s helicopter fleet.  The CBM+ 

program uses measurements from sensors to monitor the health of components replacing 

the Legacy process of scheduled inspections and maintenance.  Furthermore, Army 

Aviation’s CBM+ program is a collection of maintenance processes and capabilities 

derived, in large part, from real-time assessment of weapon system condition, obtained 

from embedded sensors and/or external tests and measurements.  Currently, aircraft parts 

are replaced based on results of scheduled maintenance inspections of the Legacy 

maintenance system.  Under CBM+, the condition of components will be monitored and 

the components replaced when sensors show indications of possible failure and extended 

wear.    

Not all components will benefit from being part of the CBM+ program. Stochastic 

modeling and simulation are used to develop a tool to assist in the component selection 

process for CBM+ program.  This work is in cooperation with the Operations Research 

Center of Excellence (ORCEN) at the United States Military Academy supporting 

AMCOM.  

The subsystem selected for this thesis is the AH-64/UH-60 T701C Turbine 

Helicopter Engine.  The times of occurrences of serious diagnostics symptoms requiring 

maintenance action were collected from the Army’s Aviation and Missile Research, 

Development, and Engineering Center (AMRDEC) and analyzed to provide input to the 
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development of a simulation model.   The resulting Microsoft Excel simulation utilizing 

Crystal Ball version 5.5 compares an engine monitored by CBM+ versus the traditional 

Legacy system of maintenance.  The output of the simulation provides information on 

diagnosed faults, mission aborts, repair times, false positives, and logistical implications. 

This simulation is generic and can be used in comparing CBM+ candidate 

components for future inclusion into the CBM+ program.  Results from the simulation 

study suggest that since a sensor is continually monitoring the component, it doesn’t have 

to be highly accurate in diagnosing impending failures in order to produce fewer mission 

aborts than the Legacy maintenance system.  However, it is extremely important to 

minimize the number of false positives when using CBM+ sensor otherwise the Legacy 

maintenance system outperforms CBM+ with respect to total inspection/repair time.



1 

I. INTRODUCTION 

A. CONDITION-BASED MAINTENANCE PLUS 
U.S. Aviation and Missile Command (AMCOM) is interested in monitoring Army 

helicopter component health through a system of sensors and monitors placed onboard 

aircraft.  Component health is defined as a component’s ability to provide the proper 

mechanical action it was designed and engineered to accomplish.  This program is in 

response to a Department of Defense (DoD) strategy which states that all services should 

seek “operational supportability” in system development and demonstration. (DoD 

5000.2, 2003)  Over the past year, approximately twenty different aircraft components 

were monitored by sensors; the components are installed on different types of airframes.  

The AH-64 Apache, UH-60 Blackhawk, and CH-47 Chinook were selected since these 

are the aircraft that are included in the Army’s force modernization plan.  This sensor 

network forms the foundation for a maintenance philosophy known as Condition-Based 

Maintenance (CBM). 

According to Defense Acquisition Guidebook dated 20 December 2004 “the goal 

of CBM is to perform maintenance only upon evidence of need.  CBM tenets include: 

designing systems that require minimum maintenance; need-driven maintenance; 

appropriate use of embedded diagnostics and prognostics through the application of 

Reliability-Centered Maintenance (RCM); improved maintenance analytical and 

production technologies; automated maintenance information generation; trend based 

reliability and process improvements; integrated information systems providing logistics 

system response based on equipment maintenance condition; and smaller maintenance 

and logistics footprints.” (Department of Defense, 2003)  A more specific form of CBM 

exists and that is known as Condition-Based Maintenance Plus (CBM+).   CBM+ 

“expands on these basic concepts, encompassing other technologies, processes, and 

procedures that enable improved maintenance and logistics practices. CBM+ can be 

defined as a set of maintenance processes and capabilities derived, in large part, from 

real-time assessment of weapon system condition, obtained from embedded sensors 

and/or external tests and measurements.  The design specifications should identify early 

teaming with systems engineering to clearly define and understand the operating 
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envelope in order to design in Built-In-Test (BIT) and Built-In-Self-Test (BIST) 

mechanisms including false alarm mitigation.” (Department of Defense, 2006)  False 

alarm mitigation is accomplished by using sensor equipment that provides for enhanced 

capability for fault detection, isolation, and repair time minimization.  The purpose of this 

enterprise is to provide cost-effective warning of potential catastrophic failure or mission 

abort. 

AMCOM’s mission statement is “to transform Army Aviation maintenance to 

Condition-Based Maintenance, by converting condition and usage data into maintenance 

actions.” (AMCOM Web Site, 2006)  Currently, aircraft parts are replaced based on a 

system of scheduled maintenance inspections.  CBM+ would drastically change this 

system.  Under CBM+, components would now be monitored and replaced only when 

sensors show indications of ill health or possible imminent failure and extended wear.   

AMCOM contacted the Operations Research Center of Excellence (ORCEN) at the 

United States Military Academy to assist in providing additional insight into this 

important area of research.  This thesis is produced in conjunction with ORCEN in an 

effort to provide AMCOM with a stochastic model and simulation that will be useful in 

aiding decisions concerning the potential introduction of aircraft components to CBM+. 

Currently, only passive sensors are employed on Army aircraft.  After each flight 

the crew chief downloads data from the sensors onto a recording device.  The crew chief 

then transfers the data to a laptop computer for that specific aircraft.  All of the crew 

chiefs’ laptop computers feed into a desktop computer at the unit’s Production Control 

office.  The Production Control office is the controlling node for all maintenance 

activities of an Army Aviation unit.  B.F. Goodrich contact teams are at specific sites and 

are assisting these Production Control offices with interpreting the data.  Based on these 

interpretations these data can trigger repair or replacement of components.  The data are 

then sent from the Production Control office to a data warehouse which is currently 

undergoing construction by the Westar Corporation.  From this data warehouse AMCOM 

reviews the data and monitors the development of CBM+.   
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B. OBJECTIVES 

The objective of this thesis is to utilize stochastic modeling and simulation to aid 

in determining which aircraft components should be included in CBM+  Microsoft Excel 

2003 and Crystal Ball version 5.5 were chosen as the software package for the simulation 

of this model. (Ragsdale, 2004)  Crystal Ball version 5.5 is an Excel-based Monte Carlo 

simulation application produced by Decisioneering Incorporated.  The components that 

have been selected to use CBM+ were chosen as a test bed to make sure that the CBM 

process results in a decrease of the maintenance burden on the soldier, an increase in 

platform availability and readiness, and a reduction of operations and support costs. 

(Brown, 2005)  Since AMCOM is in the earliest phases of CBM+, it acquired sensors to 

track and monitor aspects that its engineers hypothesized would have a useful probability 

of providing the most beneficial results in terms of improving operational readiness and 

reduction of maintenance related costs.  Now that results have been generated there needs 

to be a component selection system established that will be used when CBM+ is 

implemented across the Army aviation fleet. 

The simulation used in this thesis compares a CBM+ monitored airframe to a non-

CBM+ monitored airframe.  The measures of performance include mitigation of mission 

aborts, time spent repairing components, and time spent awaiting replacement component 

arrival. Through this comparison it is possible to determine which components to enter 

into the program based on the greatest reduction of mission aborts and possible gain in 

mission performance and operational readiness.  This can be a useful tool for AMCOM to 

use in future decision making. 

 

C. LEGACY AND CONDITION-BASED MAINTENANCE PLUS REGIMES 

A Legacy unit that conducts maintenance using the conventional maintenance 

regime is currently in place at all Army aviation units.  A CBM+ unit conducts the 

Legacy maintenance regime but also has the benefit of CBM+ sensors installed on 

specified components.  Both regimes employ intensive scheduled maintenance and 

reactive unscheduled maintenance.  The use of CBM+ monitoring promises to reduce 

numerous time-intensive scheduled maintenance actions, reduce the unexpected nature of 
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unscheduled maintenance, and increase operational readiness. (Department of the Army, 

2004)  An example of this is Air Worthiness Release (AWR) dated 16 June 2005, which 

deleted mandatory inspection requirements for six different CBM+ monitored 

components on AH-64 Apache and UH-60 Blackhawk helicopters.  This AWR saved 

Maintenance Man Hours (MMH) per inspection, downtime per aircraft, and Time 

Between Overhaul (TBO) for components.  This AWR is the first of many of its kind that 

will transition Army Aviation from the present rigid, time-intensive, and reactive Legacy 

maintenance regime to a prediction-based CBM+ maintenance regime. 

 

D. METHODOLOGY 

This thesis is divided into six chapters and follows this structure.  Chapter I, 

“Introduction,” describes the background, objectives, and methodology of this work.  

Chapter II, “Aircraft System Structure and Data,” discusses in detail the aircraft 

components that are currently monitored by Condition-Based Maintenance Plus and the 

available data describing their performance, failure, and repair.  This chapter describes 

the maintenance procedures used by Army aviation units and the repair times associated 

with these actions.  Chapter III, “Stochastic Models for Comparing Legacy Maintenance 

and Condition-Based Maintenance Plus,” details the model structures, and gives example 

cases of the stochastic model that is used in this thesis.  Chapter IV “Legacy Maintenance 

and Condition-Based Maintenance Plus Simulation,” describes the architecture, 

characteristics, assumptions, and results of the simulation used in this thesis.  Chapter V, 

“Data Analysis,” presents the results of the analysis of the simulation output as different 

components are monitored and compares average operational readiness and repair times.  

Finally, Chapter VI, “Conclusions and Recommendations,” summarizes the findings of 

this thesis and possible uses for this thesis in future decision making. 
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II. AIRCRAFT SYSTEM STRUCTURE AND DATA 

A. GENERAL DESCRIPTION OF AIRCRAFT TYPES AND COMPONENTS 
This chapter will discuss in detail the aircraft components that are currently in the 

Condition-Based Maintenance Plus program or are under consideration for inclusion.  

Any available data describing their performance, failure, and repair are listed.  

Furthermore, this chapter describes the maintenance procedures used by Army aviation 

units and the costs associated with these actions; all CBM+ sensors currently use 

vibratory information to monitor these components.  The three different types of aircraft 

presently monitored by CBM+ are the AH-64 Apache, UH-60 Blackhawk, and the CH-47 

Chinook. 

1. AH-64 Apache Helicopter Information 
The AH-64 Apache helicopter is a twin-engine, tandem-seat, aerial weapons 

platform.  (TM 1-1520-251-10, 2002)  Its primary mission is to provide attack and 

reconnaissance capabilities in support of the ground tactical plan.  There are currently 

thirteen components of eight different types monitored by CBM+ on the AH-64.  A 

listing of AH-64 Apache CBM+ components is listed in Table 1. 

 

Table 1. AH-64 Apache CBM+ Component Listing 

 

AH-64 COMPONENT 
NOMENCLATURE NSN PART NUMBER FEDLOG NOMENCLATURE 

APU Clutch 3010-01-515-8483 3617950-1 CLUTCH ASSEMBLY,FRICTION 

Engine Assembly, 701C 2840-01-284-4011 6071T24G01 ENGINE,AIRCRAFT,TURBO-SHAFT 

Utility Hydraulic Pump 4320-01-158-0893 7-311810022-3 PUMP,AXIAL PISTONS 

Forward Hanger Bearing 3130-01-333-8491 7-311350008-5 BEARING UNIT,BALL 

Aft Hanger Bearing 3130-01-333-8490 7-211350007-5 BEARING UNIT,BALL 

MR Pitch Housing 1615-01-235-5845 7-311411215-13 HOUSINGASSEMBLY 

MR Upper Mast Bearing 3110-01-215-4794 7-311411202-5 BEARING,ROLLER,TAPERED 

MR Lower Mast Bearing 3110-01-179-7335 7-114110011 BEARING,ROLLER,TAPERED 

 



6 

Depicted below in Figure 1 is the location of these components on the AH-64 

Apache extracted from Figure 2-2 of TM 1-1520-251-10.  The number in parenthesis 

indicates the total number of that type of component on the aircraft. 

 

Figure 1.   Location of AH-64 Apache CBM+ Components 

  
2. UH-60 Blackhawk Helicopter Information 
The UH-60 Blackhawk helicopter is a twin-turbine engine, single-rotor, 

semimonocoque fuselage helicopter.  Its primary mission is the tactical transport of 

troops, supplies and equipment.  Its secondary missions include training, mobilization, 

development of new and improved concepts, and support of disaster relief.  (TM 1-1520-

237-10, 2003)  There are currently nineteen components of eight different types 

monitored by CBM+ on the UH-60.  A listing of UH-60 Blackhawk CBM+ components 

is listed in Table 2. 
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Table 2. UH-60 Blackhawk CBM+ Component Listing 

 

UH-60 COMPONENT 
NOMENCLATURE NSN PART NUMBER FEDLOG NOMENCLATURE 

Oil Cooler Fan Bearing 3110-01-329-8573 110KSZZ-401 BEARING,BALL,ANNULAR 
Main Rotor Blade 1615-01-106-1903 70150-09100-043 BLADE,MAIN ROTOR 

Pump Module Assembly 4320-01-207-7228 70652-02300-050 MODULE ASSY,PUMP 
Damper Assembly 1615-01-285-3024 70106-08100-046 DAMPENER,FLUTTER 

Engine Assembly, 701C 2840-01-284-4011 6071T24G01 ENGINE,AIRCRAFT,TURBO-SHAFT 

Engine Output Drive Shaft 2835-01-123-7648 70361-08004-043 DRIVE SHAFT ASSEMBLY,ROTARY 
WING 

Intermediate Gear Box 1615-01-074-5152 70357-06300-042 GEAR BOX ASSEMBLY 

 

Depicted below in Figure 2 is the location of these components on the UH-60 

extracted from Figure 2-2 of TM 1-1520-237-10.  The number in parenthesis indicates 

the total number of that type of component on the aircraft. 

 

Figure 2.   Location of UH-60 Blackhawk CBM+ Components 

 
3. CH-47 Chinook Helicopter Information 
The CH-47 Chinook is a twin-turbine engine, tandem-rotor helicopter.  Its 

primary mission is the transportation of cargo, troops, and weapons during day, night, 

visual, and instrument conditions. (TM 1-1520-240-10, 2003).  There are currently 

sixteen different components of four different types on the CH-47 monitored by CBM+.  

A listing of CH-47 Chinook CBM+ components is listed in Table 3. 
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Table 3. CH-47 Chinook CBM+ Component Listing 

 
CH-47 COMPONENT  

NOMENCLATURE NSN PART NUMBER FEDLOG NOMENCLATURE 

Hinge Pin Assembly 5315-01-295-7008 114R2197-7 PIN,HOLLOW 
Tie Bar Assembly 1615-00-740-6480 114R2155-1 TIE BAR ASSEMBLY,LAMINATED 

Engine, Gas Turbine 2840-01-458-5361 2-001-020-39 ENGINE,AIRCRAFT,TURBO-SHAFT

Fwd/Aft Swashplate Bearings 3110-00-141-3750 
3110-01-356-0489 

114RS308-1 
114RS308-2 SWASHPLATE BEARING 

 

Depicted below in Figure 3 is the location of these components on the CH-47 

extracted from Figure 2-1-1 of TM 1-1520-224-10.  The number in parenthesis indicates 

the total number of that type of component on the aircraft. 

 

Figure 3.   Location of CH-47 Chinook CBM+ Components 

                           

 
B. SPECIFIC DESCRIPTION OF COMPONENT CHARACTERISTICS  

Brief descriptions of the components of interest on the AH-64 Apache referenced 

from TM 1-1520-251-10 are: 

1.  Auxiliary Power Unit Clutch is a subcomponent of the Auxiliary Power Unit 

(APU) which provides both hydraulic pressure, pressurized air, and electrical power for 
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the operation of systems onboard the AH-64 whether the engines are operating or not.  

The APU is required to start the main engines unless the AH-64 is assisted with an 

Auxiliary Ground Power Unit (AGPU). 

2.  701C Engine Assemblies are the main engines for the AH-64.  The engines are 

front drive turbo shaft engines of modular construction.  One horizontally mounted 

engine is housed on either side of the AH-64 aft of the main transmission above the wing. 

3.  Utility Hydraulic Pump is a subcomponent of the utility hydraulic system that 

provides hydraulic power to the flight controls, weapon drives, ammunition systems, and 

emergency hydraulic systems.  This pump is mounted on the accessory drive case of the 

main transmission (right side). 

4.  Forward Hanger Bearing is a component of the tail rotor drive system.  A 

hanger bearing supports the two longest shafts of three shafts that lead from the 

transmission to the intermediate gear box.  There is a fourth shaft that leads from the 

intermediate gear box to the tail rotor.  The forward hanger bearing is located on the end 

of the second shaft. 

5.  Aft Hanger Bearing serves the same purpose as the Forward Hanger Bearing; 

it is located on the end of the third shaft. 

6.  Main Rotor Pitch Housing is a subcomponent of the rotor head.  The pitch 

housing permits blade pitch changes in response to flight control movements transmitted 

through the swashplate. 

7.  Main Rotor Upper Mast Bearing is a subcomponent of the AH-64 mast 

collocated with the rotor head. 

8.  Main Rotor Lower Mast Bearing is similar to the upper bearing but located 

lower. 

Brief descriptions of the components of interest on the UH-60 Blackhawk 

referenced from TM 1-1520-237-10 are: 

1.  Oil Cooler Fan Bearing is a subcomponent of the tail rotor drive section.  The 

oil cooler cools oil from the engine before it returns it to the oil tank.  Shafts from the 

main transmission connect the oil cooler and also transmit torque to the tail rotor.  There 
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are four points were viscous damped bearings are mounted on adjustable plates which 

support these shafts that lead to the tail rotor. 

2.  Main Rotor Blades are a subsystem of the main rotor system.  A rotor blade 

has a titanium-spar and is attached to spindles which are retained by elastomeric bearings 

contained in one-piece titanium hub. The elastomeric bearing permits the blade to flap, 

lead, and lag. 

3.  Pump Module Assembly is a component that provides hydraulic pressure to 

the Blackhawk’s hydraulic system.  The hydraulic pump module assemblies are a 

combination of a hydraulic pump and a hydraulic fluid reservoir. 

4.  Damper Assembly is located between the main rotor blade and the main rotor 

head.  Main rotor dampers are installed between each of the main rotor spindles modules 

and the hub to restrain leading and lagging motions of the main rotor blades during 

rotation and to absorb rotor head loads when starting the aircraft. Each damper has a 

small hydraulic fluid reservoir. 

5.  701C Engine Assemblies are the main engines for the UH-60.  The engines are 

front drive turbo shaft engines of modular construction.  One horizontally mounted 

engine is housed on either side of the UH-60.  These are the same engines that are 

mounted on the AH-64 Apache. 

6.  Engine Output Drive Shaft is a subcomponent of the UH-60 power train 

system.  It transfers torque generated by the engine to the main transmission. 

7.   Intermediate Gear Box is a subcomponent of the UH-60 power train system.  

It is mounted at the base of the tail pylon.  It transmits torque and reduces shaft speed 

from the main module gear box to the tail rotor gear box. 

Brief descriptions of the components of interest on the CH-47 Chinook referenced 

from TM 1-1520-224-10 are: 

1.  Hinge Pin Assembly is a component of the rotor system.  The rotor head 

consists of a hub connected to three pitch-varying shafts by three horizontal hinge pins.  

These pins permit blade flapping.  Stops on the top and bottom of the hub limit the blade 

flapping motion. 
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2.  Tie Bar Assembly is located close to the hinge pin assembly.  It connects the 

pitch-varying shafts to the pitch-varying housings on the rotor heads. 

3.  Engines on the CH-47 are housed in separate nacelles mounted externally on 

each side of the aft pylon. 

4.  Forward/Aft Swashplate Bearings rotate and transfer blade pitch changes by 

the three pitch-varying links to the pitch-varying housing on each rotor blade. 

 

C. MAINTENANCE REGIMES OF COMPONENTS 
Army Aviation maintenance regimes are composed of both periodic and on 

condition maintenance tasks.  Prescribed maintenance tasks can be subdivided into five 

major areas: (AMCOM Proof of Principle, 2005) 

1. PM: Maintenance or inspections performed in accordance with normal 

Preventive Maintenance Checks and Services. 

2. On Condition: Maintenance or inspections occurring after the aircraft 

encounters a specific event or flight in certain environmental conditions. 

3. -18: Maintenance or inspections prescribed in maintenance manuals and 

tracked on the -18 forms kept in the aircraft log book. 

4.  ASAM: Maintenance or inspections listed in a specific Aviation Safety Action 

Message. 

5.  AWR: Maintenance or inspections listed in a specific Air Worthiness Release. 

These maintenance tasks are outlined by several different maintenance manuals, 

log book forms, and messages/releases specific for each airframe type.  A component 

may be inspected as often as every day or at intervals of several hundred hours.  Each 

inspection interval is a unique inspection in the sense that some of the more common 

inspections are a visual exterior check of a component whereas the more infrequent 

inspections require removal of the component from the airframe, disassembling it, and 

conducting a much more thorough inspection.  Each inspection has a specific number of 

maintenance-man hours (MMH) required in order to complete the maintenance task. 
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Listed below in Tables 4 and 5 are the most time consuming and thorough 

inspections for each component listed above for the AH-64 Apache and UH-60 

Blackhawk.  In cases where there are two different interval inspections with the same 

MMH and clock time requirements the more frequent inspection of the two is listed: 

 

Table 4. AH-64 Apache Maintenance Regime 

 

 

Table 5. UH-60 Blackhawk Maintenance Regime 

 
UH-60 Component Inspection Reference Maint Type MMH 

Oil Cooler Fan Bearing 700 Flight Hours TM 1-1520-237-PMI PM 11.3* 

Main Rotor Blade 700 Flight Hours TM 1-1520-237-PMI PM 17.2 

Pump Module Assembly 700 Flight Hours TM 1-1520-237-PMI PM 0.03 

Damper Assembly 700 Flight Hours TM 1-1520-237-PMI PM 2.5* 

Engine Assembly, 701C 700 Flight Hours TM 1-1520-237-PMI PM 12.4* 

Engine Output Drive Shaft 700 Flight Hours TM 1-1520-237-PMI PM 4.9* 

Intermediate Gear Box 120 Flight Hours TM 1-1520-237-23 -18 2.0* 
* If no Maintenance Allocation Chart (MAC) data was available or seemed suspect a review of the 
appropriate techniques were conducted and a time was allocated by AMCOM Subject Matter Experts 

 

A CH-47 Chinook Maintenance Regime is not listed since a Proof of Principle 

brief was not conducted on the CH-47 Chinook CBM+ program due to the progression of 

the CH-47 CBM+ program.  Proofs of Principle briefs are the source of maintenance 

regime information for both the AH-64 Apache and UH-60 Blackhawk. (Brown, 2005) 

AH-64 Component Inspection Interval Reference Maint Type MMH 

APU Clutch 250 Flight Hours TB 1-1520-238-20-139 -18 34.4* 

Eng Assy, 701C 500 Flight Hours TM 1-1520-238-PM PM 20.5* 

Utility Hydraulic Pump 250 Flight Hours TB 1-1520-238-20-139 -18 1.1 

Forward Hanger Bearing 500 Flight Hours TM 1-1520-238-PM PM 4.4* 

Aft Hanger Bearing 500 Flight Hours TM 1-1520-238-PM PM 4.4* 

Main Rotor Pitch Housing 125 Flight Hours TM 1-1520-238-23 -18 0.5* 

Main Rotor Upper Mast Bearing 500 Flight Hours TM 1-1520-238-PM PM 20.4* 

Main Rotor Lower Mast Bearing 500 Flight Hours TM 1-1520-238-PM PM 20.4* 
* If no Maintenance Allocation Chart (MAC) data was available or seemed suspect a review of the 
appropriate techniques were conducted and a time was allocated by AMCOM  Subject Matter Experts 
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D. FAILURE/AGE REPLACEMENT CHARACTERISTICS OF 
COMPONENTS 
The Aviation and Missile Research, Development, and Engineering Center 

(AMRDEC) provided data sets for component failure times.  The failure times are the 

occurrences of serious diagnostic symptoms requiring maintenance actions.  The data sets 

are displayed in Microsoft Excel format and each data set consists of twenty-one 

columns.  The twenty-two columns are listed below. 

1. WUC: Work Unit Code 

2.  PN: Part Number of component 

3.  SN: Serial Number of component 

4.  EI_SN: End Item Serial Number (aircraft tail number) 

5.  MODEL: The model of aircraft 

6.  DATE: Date the action was performed 

7.  REP_NUM: Repair Number-The number of times the part was removed for a 

causable removal. 

8.  CEN: Censored-If 1 then installed and still flying, else 0 and component 
removed 

9.  LIFE: If CEN=0, the time on the component since new or last causable 

removal.  If CEN=1, the current time on the component. 

10.  TSN: Time Since New 

11.  TSO: Time Since Overhaul 

12.  NOVH: Number of Overhauls 

13.  F_TYPE: Type of failure 

14.  FCODE: Failure Code 001 to 999, the reason the part was removed 

15.  FAILURE: Narrative for the FCODE 

16.  FAMILY: The fail code grouped into failure family types. 

17.  PREV_FC: Failure Code on the previous removal 
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18.  REP_UIC: UIC that repaired the item last or original manufacture if 

REP_NUM=1. 

19.  REPAIR: Location name of the UIC that repaired the item last. 

20.  UIC: Unit Identification Code of removing unit 

21.  LOC: Location of the UIC 

22.  SN_PREFX: Serial Number substring as a prefix to perform comparison 

analysis 

In addition to this data, each airframe type has a Technical Manual which states a 

component’s Time Between Overhaul (TBO) and/or component retirement time.  These 

manuals allow the determination of a component’s age replacement time if one exists.  

Listed below in Table 6 are the CBM+ component’s estimated mean time between failure 

(MTBF) and Age Replacement times.  The Age Replacement times are derived from the 

applicable airframes’ Technical Manual.  The MTBFs listed below are obtained from 

AMCOM’s Proof of Principle briefs prepared in July 2005. (Brown, 2005)  The MTBF 

estimates take into account that some of the data are censored.  When both TBO and 

component retirement times are given by the applicable reference the more restrictive of 

the two numbers is listed. 
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Table 6. CBM+ Component MTBF and Age Replacement 

 
AH-64 Component MTBF Age Replacement 

APU Clutch 900 Flight Hours On Condition of Failure 

Engine Assembly, 701C 1,304 Flight Hours 5,000 Flight Hours** 

Utility Hydraulic Pump 464 Flight Hours On Condition of Failure 

Forward Hanger Bearing 834 Flight Hours 2,500 Flight Hours 

Aft Hanger Bearing 537 Flight Hours 2,500 Flight Hours 

Main Rotor Pitch Housing 257 Flight Hours 5,300 Flight Hours 

Main Rotor Upper Mast Bearing 1,250 Flight Hours 1,750 Flight Hours 

Main Rotor Lower Mast Bearing 1,250 Flight Hours 9,400 Flight Hours 

UH-60 Component MTBF Age Replacement 

Oil Cooler Fan Bearing 14,425 Flight Hours 700/2,100 Flight Hours* 

Main Rotor Blade 1,594 Flight Hours 9,600 Flight Hours 

Pump Module Assembly 5,969 Flight Hours On Condition of Failure 

Damper Assembly 6,629 Flight Hours On Condition of Failure 

Engine Assembly, 701C 1,342 Flight Hours 5,000 Flight Hours** 

Engine Output Drive Shaft 2,581 Flight Hours On Condition of Failure 

Intermediate Gear Box 6,624 Flight Hours On Condition of Failure 

CH-47 Component MTBF Age Replacement 
Hinge Pin Assembly 3,393 Flight Hours 1,200 Flight Hours 
Tie Bar Assembly 2,925 Flight Hours 4,800 Flight Hours 

Engine 602 Flight Hours 2,400 Flight Hours 
Forward/Aft Swashplate Bearings 991/867 Flight Hours 1,200 Flight Hours 

*700 flight hours when installed at Station 410.5; all others 2,100 flight hours 
**701C Engine Assembly has several components changed at various intervals.  5,000 Flight Hours is the 
most common age replacement time of the most critical components. 

 

E. COSTS ASSOCIATED WITH COMPONENTS  

Listed below are each component’s cost and an estimate of its shipping cost.  It is 

assumed that the components can be divided into three different weight classifications.  A 

component weight is considered to be either light, medium, or heavy.  In addition, the 

component’s shipment is either urgent or not urgent. Table 7 displays the approximate 

costs of shipping components of different weights 2000 miles under urgent and not 

urgent requirements. These shipping costs, while approximate, are realistic.  Although the 

model and simulation do not include costs for component shipping this must occur in 

both the Legacy and CBM+ Process; it is important to state these values in recognition 

that this exists in both processes. 
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Table 7. CBM+ Component and Shipping Costs 

 

AH-64 Component FEDLOG 
Unit Price 

OSMIS 
Weight 

Weight 
Classification

Urgent 
Shipping Cost 

Non-urgent 
Shipping 

Cost 

APU Clutch $27,774.00 Unavailable Medium $1,000 $500 

Engine Assembly, 701C $720,974.00 Unavailable Heavy $3,000 $1,500 

Utility Hydraulic Pump $9,437.00 Unavailable Medium $1,000 $500 

Forward Hanger Bearing $6,941.00 400 Light $200 $50 

Aft Hanger Bearing $5,673.00 216 Light $200 $50 

Main Rotor Pitch Housing $6,846.00 894 Medium $1,000 $500 

Main Rotor Upper Mast Bearing $7,295.00 275 Light $200 $50 

Main Rotor Lower Mast Bearing $5,126.84 40 Light $200 $50 

UH-60 Component FEDLOG 
Unit Price 

OSMIS 
Weight 

Weight 
Classification

Urgent 
Shipping Cost 

Non-urgent 
Shipping 

Cost 

Oil Cooler Fan Bearing $290.71 8 Light $200 $50 

Main Rotor Blade $130,420.00 6500 Medium $1,000 $500 

Pump Module Assembly $16,771.00 560 Medium $1,000 $500 

Damper Assembly $9,770.00 500 Light $200 $50 

Engine Assembly, 701C $720,974.00 Unavailable Heavy $3,000 $1,500 

Engine Output Drive Shaft $4,812.00 Unavailable Medium $1,000 $500 

Intermediate Gear Box $20,694.00 800 Medium $1,000 $500 

CH-47 Component FEDLOG 
Unit Price 

OSMIS 
Weight 

Weight 
Classification

Urgent 
Shipping Cost 

Non-urgent 
Shipping 

Cost 

Hinge Pin Assembly $5,520.00 330 Light $200 $50 

Tie Bar Assembly $11,822.00 120 Light $200 $50 

Engine $916,406.00 11,650 Heavy $3,000 $1,500 

Forward/Aft Swashplate Bearings Unavailable Unavailable Light $200 $50 
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III. STOCHASTIC MODELS FOR COMPARING LEGACY 
MAINTENANCE AND CONDITION-BASED MAINTENANCE PLUS 

A. IMPORTANT FACTORS FOR CBM+ CANDIDACY 

In determining a whether or not to introduce a component into the CBM+ 

program a number of factors should be considered: 

1. How often does the component fail during active flight hours? 

It is preferable to introduce a component that fails often versus components that 

rarely fail. 

2. What are the consequences of a component failing? 

It is preferable to introduce a component that possesses severe consequences for 

failure versus a component that is inconsequential in its failure. 

3. What is the difficulty level of the inspection that would be alleviated by 

CBM+? 

If an inspection is extremely difficult and resource intensive to perform it would 

be preferable to have this inspection replaced by CBM+ versus an inspection that is 

simple and easy to perform. 

4.  Is a CBM+ sensor feasible for a component? 

If measurements cannot be taken to assess the degradation of the component 

before it fails then that component would not be a good CBM+ candidate.  Furthermore, 

the time from occurrence of measurable evidence of impending failure until failure 

should be long enough to detect the impending failure and take maintenance action.    

5. What is the reliability of the CBM+ sensor, the difficulty of inspecting the 

CBM+ sensor, and the effect of the CBM+ sensor on performance of the component 

being monitored?  Is there even a CBM+ sensor currently developed for a component? 

What is the cost of the sensor? 

By focusing on the CBM+ sensor it can be determined whether or not the sensor 

itself may sometimes miss impending failures, give false positives, require intensive 
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maintenance, or impede standard operations.  Maintainers are often wary of adding a new 

system designed to help them conduct maintenance operations for fear of there now being 

one more system to maintain. 

Stochastic models can be created to assist in identifying information needed to 

determine characteristics of components that make the component a good candidate for 

monitoring by CBM+.  Such stochastic models compare a single component’s 

performance and associated costs in both the CBM+ and Legacy processes.  The models 

can vary in detail and complexity; transparency and simplicity are desirable.   

 

B. MODEL OVERVIEW 
In choosing a model to represent the operating environment of CBM+ it is 

convenient to let every aircraft component being considered for CBM+ begin in good 

operating condition.  Over time the component’s condition/state degrades and eventually 

the component fails.  We consider a component that allows predictive measurements to 

be made of its condition (failure propensity); these are diagnostic symptoms (DS).  If a 

DS can be recognized by maintenance personnel then this information is a useful 

indication that the component is beginning to fail.  A DS can be detected by a CBM+ 

sensor or noticed by a maintainer during the conduct of scheduled maintenance, or by the 

operator. 

If conditions for a near-term future failure exist it is essential to recognize the 

impending failure in order to lessen such a failure’s effect.  CBM+ sensors recognize 

impending failure of components by monitoring the component’s performance.  

Specifically the UH-60 IMD-HUMS system notes condition indicators (CIs) based on 

vibratory analysis of items such as bearings, shafts, and gears.  These CIs are rolled up 

into health indicators (HIs) which are numbers from 0 to 1 displaying the perceived 

health of that component.  (Wright, 2005)  This system of CIs and HIs is used to 

determine the occurrence of DSs.  Under the Legacy maintenance system when 

maintenance personnel conduct a scheduled inspection of an aircraft they are looking for 

chips, cracks, dents, nicks, wears, incorrect lubrication levels, incorrect pressure outputs 

(pneumatic and fluids), and other potential faults.  These physical inspections determine 
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the occurrence of DSs.  A DS may or may not be noticed during the downtime 

immediately following the mission during which it was generated. All DSs are 

discovered during inspections during downtimes.  (Gaver and Jacobs, 2006) 

The following are the components which form a general framework for a Non-

Homogeneous Poisson Process (NHPP) model for the occurrence of DSs for both the 

CBM+ process and the Legacy process: 

( )N t : number of transitions of components from good condition to poor 

condition during the time interval (0, ]t , (number of occurrences of DSs during (0,t]); 

each transition corresponds to the occurrence of one DS.  In many cases the times 

between failures of repairable components may tend to decrease as the components age.  

Thus ( ){ }; 0N t t ≥  is assumed to be a nonhomogeneous Poisson process with  

( )tΛ : mean value function of {N(t);t≥0}; that is  ( ) ( )E t t= Λ⎡ ⎤⎣ ⎦N . 

( )tλ : intensity function of {N(t);t≥0};  that is  ( ) ( )d t
t

dt
λ

Λ
= .  

 m: constant mission length 

 

C. A NON-HOMOGENEOUS POISSON PROCESS (NHPP) MODEL 
Renewal processes are often used to model times between failures for a system.  

For a renewal process to apply, the times between successive failures should be 

independent and identically distributed with an arbitrary distribution. (Ross, 2003)  In 

order to either accept or refute the assumption that the times between failures are 

independent and identically distributed failure data must be analyzed.  The data set that 

was selected for evaluation is the set of AH-64/UH-60 701C Engine lifetime data.  The 

lifetimes are the times between occurrences of serious diagnostic symptoms requiring 

maintenance action. The reason for the selection of this data set is that each engine may 

have several failure times recorded.  The data set contains both censored and uncensored 

lifetime data.   Multiple lifetimes for an engine are indicated by the same engine serial 

number (SN) being listed with consecutive lifetimes (REP_NUM).  This gives the 
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opportunity to assess whether or not the successive times between failures for an engine 

can be approximately represented as independent and identically distributed. If there is 

evidence that the successive lifetimes are not independent and identically distributed, 

then a renewal process model for the times between failures is not appropriate.  

Analysis of the engine data suggests that the times between failures are not 

identically distributed.  Therefore a Non-Homogeneous Poisson Process (NHPP) model 

for the failure times is considered.  Although the term “failure” is used, these events are 

actually occurrences of serious diagnostic symptoms that require maintenance action. 

The AH-64/UH-60 701C Engine data provided by AMRDEC consists of 3,385 

entries in the format outlined in Chapter Two.  From this group of 3,385 entries there 

were 2,045 entries that were first lifetimes, 913 entries that were second lifetimes, 480 

that were third lifetimes, and 397 that were fourth lifetimes.  These data are not complete 

with regards to all lifetimes being annotated for all serial numbers.  There are missing 

lifetime data which are not due to censoring.  However, some of these missing lifetimes 

can be inferred from other recorded data.  For example, suppose the first lifetime is 

missing but the second lifetime is recorded along with the time since the engine was new 

at the time of the second failure. In this case the first lifetime can be inferred by 

subtracting the second lifetime from the time since new.  The engine data considered 

appear in Appendix A. The engines considered have at least three failure times recorded.  

The columns named WUC, PN, TSO, NOVH, REP_UIC, REPAIR, UIC, LOC, and 

SN_PREFX have been omitted from the original data set since these factors are not 

relevant in this analysis, and to make the data set more compact.  None of the engines 

displayed TSO (Time Since Overhaul) and NOVH (Number of Overhauls); therefore 

these columns are omitted. 

In Figure 4 the mean times between failures for the first, second, third and fourth 

failures with 95% confidence intervals are displayed; censored lifetimes are not included.  

This figure suggests that the successive lifetimes of an engine are not identically 

distributed; the time until first failure tends to be much larger than the subsequent times 

between failures. 
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Figure 4.   Mean Failure Times for Engines by Consecutive Lifetimes 
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An estimate of the intensity function of a NHPP is obtained by using disjoint time 

intervals of length 500 hours from 0 to 3,000 hours.  Let ( )jN t  be the number of failures 

for engine j during the time interval (0,t]. 

( )
1              if the last observation for engine j (censored or not) is greater than x

,
0              otherwise jI x ⎧

∞ = ⎨
⎩

 

The intensity function in the age interval [x, x+500] where x ∈  (0, 500, 1,000, 

1,500, etc.) is estimated as  

( ) ( )

( )

500

500

j j
j

j
j

N x N x

I x

⎡ ⎤+ −⎣ ⎦∑

∑
     (Jacobs, 2006) 

A display of the resulting estimated intensity function is in Appendix B.  The log of the 

estimated intensity function versus log t is also displayed.  This latter display suggests 

that an NHPP with power-law mean value function ( )t tδγΛ =  tends to summarize the 

data well.  The parameters of a NHPP with power-law mean value function of the form 
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( )t tδγΛ =  are estimated from the engine data using maximum likelihood.  The estimates 

and standard errors are listed in Figure 5.  The standard errors are obtained using Fisher 

information. (Bickel and Doksum, 1977) 

 

Figure 5.   NHPP Parameter Estimates 

    
Standard Error
Estimate ± 2 s.e.

0.015
(1.68,1.74)

Standard Error
Estimate ± 2 s.e.

6.3x10-7

(4.2x10-6,6.7x10-6)

NHPP Parameter Estimates
Estimate of γ 5.4x10-6 Estimate of δ 1.71

    

 

The estimate of δ is statistically significantly greater than 1, suggesting that 

failures are more frequent for older engines.  The older an engine, the more likely various 

subcomponents are to fail. 

 

D. MODEL STRUCTURE 

The power law NHPP model with the estimated parameters is used in a model to 

assist in the selection of components for inclusion in the CBM+ process.  The model 

represents the arrival of DSs during each mission, the number of downtimes elapsed until 

the DSs are discovered, the repair times associated with the discovery of the DSs, and the 

chance a component failure will cause a mission abort. This analytical model is taken 

directly from Gaver and Jacobs (2006).  

Let ( )tN be the number of transitions of components from good condition to poor 

condition (occurrence of diagnostic symptoms (DS)) during the operational time interval 

(0,t]. ( ){ }; 0t t ≥N is a nonhomogeneous Poisson process with mean value function 

( ) ( )t E tΛ = ⎡ ⎤⎣ ⎦N  and intensity function ( ) ( )d t
t

dt
λ

Λ
= . The DSs may not be discovered 

immediately. The DSs are discovered during inspection during downtimes.  Each mission 

is of length m.  Let ( ) ( )( )1i mi m i= − −N N N  be the number of DSs to occur during the 

ith  mission.   iN  has a Poisson distribution with mean ( ) ( )( )1i mi m iΛ = Λ −Λ − .  For 

example if the length of the mission is 4 hours long (m=4) and ( )t tδγΛ = , then 
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( ) ( )( )4 4 1i i i δδγ γΛ = − − .  The computations used to derive the estimates of γ  and δ  

are listed in Appendix C.  These estimated values are used throughout the thesis.  

Let jp be the conditional probability a DS is discovered during the jth downtime 

after the mission within which it first appears, given it has not been discovered before and 

the DS has not caused a mission abort; the downtime immediately after the mission the 

DS appears in is labeled downtime 1.  In general, 1 2 ...p p≤ ≤ . Assume that whether or 

not a DS is discovered during a downtime is independent from downtime to downtime 

and from DS to DS. Suppose also that if a DS is generated during a mission it can 

critically activate during that mission, causing the mission to fail.  This is known as a 

mission abort.  Further, let ja  denote the conditional probability that the DS critically 

activates during the jth mission after its generation, given it has not been discovered and 

rectified in advance; 1a  is the probability of critical activation during the mission of its 

genesis. Let ,i i j+D  be the number of DSs that occurred during mission i that are 

discovered during the jth downtime after mission i before a critical activation; it has a 

Poisson distribution with mean ( )( ) ( )
1

1
1 1 1

j

i k k j j
k

p a a p
−

=

⎡ ⎤
Λ − − −⎢ ⎥

⎢ ⎥⎣ ⎦
∏ ; that is,  ,i iD  has a 

Poisson distribution with mean   ( )1 11i a pΛ − ;  , 1i i+D  has a Poisson distribution with 

mean   ( )( )( )1 1 2 21 1 1i a p a pΛ − − − , etc. Further, these random variables are currently 

assumed independent. It is of course possible that critical activation occurs before the DS 

is discovered and the fault removed. Let *
,i i j+D  denote the number of DSs that are 

generated during the ith mission that give rise to a critical activation (mission abort) 

before discovery j  missions after they are generated. Clearly *
,i iD  is Poisson with mean 

1iaΛ ,  *
, 1i i+D  is Poisson with mean ( )( )1 1 21 1i a p aΛ − − ; etc. (Gaver and Jacobs, 2006) 

Assume that DSs that cause mission abort are discovered in the downtime 

following the aborted mission. The number of DSs discovered during the ith downtime, 

*
, ( ) , ( )

1

i

i j j i j j j i j
j

+ − + −
=

⎡ ⎤= +⎣ ⎦∑D D D , has a Poisson distribution with mean  
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( )( )
( )

( ) ( )1 1
1 1

1 1 1 1 1
i ji

i j k k i j i j
j k

E p a a p
−

+ − + −
= =

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥= Λ − − − − −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

∑ ∏D  

where an empty product is interpreted as equal to 1. (Gaver and Jacobs, 2006) 

The expected number of missions that are not aborted during the first t scheduled 

missions can be calculated as follows. Let ( )S t  be the number of DSs that can cause 

mission abort during mission  t ; there is at most one mission abort per mission. Let ( )s n  

be the probability a DS causes a mission abortion during the nth mission after it is 

generated. Assume ip p≡  and ia a≡  for all i .   

( ) ( )( ) 11 1 ns n a p a−
= − −⎡ ⎤⎣ ⎦        (1) 

( ) ( )( )
1

1
t

i
i

E S t s t i
=

= Λ − −⎡ ⎤⎣ ⎦ ∑  

( ) ( )( )
1

1
t

i
i

Var S t s t i
=

= Λ − −⎡ ⎤⎣ ⎦ ∑  

( )S t  has a Poisson distribution.  The probability mission t is aborted is 

( ){ } ( ){ }0 1 expP S t E S t> = − − ⎡ ⎤⎣ ⎦ .  Let ( )A t be the number of missions that have been 

aborted during the first t missions. A mission is aborted if at least one DS causes a 

mission abort.  

( ) ( ){ }
1

1 exp
t

i
E A t E S i

=

⎡ ⎤= − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦∑       (2) 

( ) ( ){ } ( ){ }
1

1 exp exp
t

i
VAR A t E S i E S i

=

⎡ ⎤= − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦∑  

In the general case   

( ) ( )( )
1

1
1 1

t

i i t
i

s t a p a
−

=
⎡ ⎤= − −⎣ ⎦∏        (3) 

where an empty product is set equal to 1. (Gaver and Jacobs, 2006) 
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IV. LEGACY MAINTENANCE AND CONDITION-BASED 
MAINTENANCE PLUS SIMULATION  

A. SIMULATION ARCHITECTURE AND CHARACTERISTICS 

This simulation is based on the nonhomogeneous Poisson process model as 

described in Chapter III.  The Visual Basic for Applications (VBA) coding used as a 

macro within Microsoft Excel 2003 is listed in Appendix D.  The Excel workbook 

consists of four worksheets named “RVs,” “Legacy Process,” “CBM+ Process,” and 

“Data.” 

The purpose of “RVs” worksheet is to receive all variable inputs.  The variable 

inputs for this simulation are: 

1.  # Replications: This number sets the number of iterations for the simulation to 

perform. 

2.  PL(h): The probability that the Legacy Process will recognize a DS during a 

downtime that includes an inspection lasting h hours. 

3.  PC: The probability that the CBM+ Process will recognize a DS during a 

downtime.  The number of downtimes until a DS is discovered has a geometric 

distribution with mean 1

cP
.  For each DS an independent PC is drawn from a Beta 

distribution with mean 0.99 and variance .00037711.  The randomization of PC is 

determined by a Beta distribution and both αB and βB parameters are entered on the 

worksheet.  Initially the Beta distribution is generated using αB=25 and βB=.25.  The 

equation for the probability density function of the beta distribution is: 

1 11( ; , ) (1 )  for 0 x 1 and 0 otherwise
( , )

B B
B B

B B

f x x x
B

α βα β
α β

− −= − ≤ ≤   

where B is the normalizing constant. 

4.  R0: The initial repair time incurred upon a DS discovery.  

5.  R1: The subsequent repair time incurred if DS not discovered after first 

mission. 
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6.  A0: The initial repair time incurred upon a mission abort. 

7.  A1: The subsequent repair time incurred if mission abort causing DS is not 

discovered after first mission. 

8.  MA: For each DS an independent time until the DS results in a mission abort is 

drawn from a Weibull distribution with shape parameter 1.5 and mean 10. The values of 

both Weibull parameters αW and βW parameters are entered on the worksheet.  Initially the 

Weibull distribution is generated using αW=1.5 and βW=11.08.  The equation for the 

probability density function of the Weibull distribution is:  

( )
( 1)( ; , ) ( )( )  for x 0 and 0 otherwise 

W

W W

x
W

W W
W W

xf x e
α

α βαα β
β β

−
−= ≥ . 

9.  POH:  This is the probability that the required replacement component is on 

hand when a DS is discovered or causes mission abort.  For each discovered DS, or a DS 

that causes a mission abort, an independent Bernoulli random number is generated to 

determine if the replacement component is immediately available or must be ordered 

from a depot.  

10.  TOH: If a replacement component is ordered, a time TOH until the replacement 

component arrives is generated; the time has an exponential distribution.   

11. λi: The expected number of DSs to occur during mission i having length 4 

hours; [(4 ) (4( 1) )]i i iδ δλ γ= − − ; the values of gamma and delta are the maximum 

likelihood estimates obtained from analysis of the engine data. 

The “RVs” worksheet generates the number of DSs to occur during each mission; 

the number of DSs that occur during the ith mission is generated using a Poisson 

distribution where the mean is determined by the appropriate λi  .  These numbers of DSs 

are used for both the “Legacy Process” and the “CBM+ Process.”  This provides a 

common arrival process for both the Legacy and CBM+ processes. 

The purpose of the “Legacy Process” and “CBM+ Process” worksheets is to 

provide the cell structure and formula to determine the following information for the two 

different processes: 
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1. Dij: The number of downtimes to occur until the jth DS generated during the ith 

mission is discovered.  

2. MAij: The number of downtimes to occur until the jth DS generated during the 

ith mission results in a mission abort; for each DS the same time until mission abort is 

used in the Legacy and CBM+ models.  

3. Rij: The total repair time from the jth DS resulting from the ith mission. 

4. Sij: The total time awaiting replacement components from the jth DS resulting 

from the ith mission; for each DS the time is drawn from an exponential distribution with 

a common mean for both the Legacy and CBM+ models.  

The purpose of the “Data” worksheet is to display the results of each simulation 

replication and then compute the means, standard deviations, and 95% confidence 

intervals of the results for the Legacy and CBM+ processes.  The results that are 

tabulated for both processes are: 

1.  ∑DSs<=M: The number of diagnostic symptoms that are detected before the 

end of the total number of missions observed (M). 

2.  ∑DSs>M: The number of diagnostic symptoms that are detected after the end 

of the total number of missions observed (M) but were generated during the M missions. 

3.  ∑Aborts<=M: The number of mission aborts that occur before the end of the 

total number of missions observed (M). 

4.  ∑Aborts>M: The number of mission aborts that occur after the end of the total 

number of missions observed (M) that are due to DSs generated during the M missions. 

5.  ∑R<=M: The sum of repair times that occur before the end of the total number 

of missions observed (M). 

6.  ∑R>M: The sum of repair times that occur after the end of the total number of 

missions observed (M) that are due to DS generated during the M missions. 

7.  ∑R: The sum of repair times that occur. 

8.  ∑S<=M: The sum of time spent awaiting component arrival that occurs before 

the end of the total number of missions observed (M). 
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9.  ∑S>M: The sum of time spent awaiting component arrival that occurs after the 

end of the total number of missions observed (M) that are due to DS generated during the 

M missions. 

10.  ∑S: The sum of time spent awaiting component arrival that occurs. 

 

B. DETERMINATION OF PC AND PL 

The number of downtimes until the Legacy or CBM+ process recognizes a DS is 

a direct result of a process’s probability of successfully at detecting a DS.  The 

conditional probability a DS is discovered n downtimes after it is generated in the Legacy 

process, given it has not been discovered before and has not caused a mission abort, is 

PL(h) where h is the maintenance man-hours (MMH) incurred during the downtime; in 

the CBM+ process the conditional probability a DS is discovered during a downtime, 

given it has not been discovered before and has not caused a mission abort is a constant 

PC; that is the number of downtimes until a generated DS is discovered has a geometric 

distribution with probability of success PC.  Initially it is assumed that the CBM+ Process 

PC has an expected value of 0.99; this may be an optimistic value.  The effect of the 

variability of the time to discover different DSs is modeled by randomizing PC using a 

Beta distribution.  For each generated DS the PC is independently drawn from a Beta 

distribution having mean 0.99.   The mean value of 0.99 is based on a telephone 

conversation with Mr. Johnny Wright the Deputy Program Manger for B.F. Goodrich 

Corporation’s IMD-HUMS program on January 27, 2006. (Wright, Personal 

Communication, 2006)  He stated that the parameters of the CBM+ sensors were set very 

conservatively in order to capture all changes in vibratory patterns.  Since this is an 

emerging technology, B.F. Goodrich Corporation wants to ensure that their sensors do 

not inadvertently miss any vibratory indications that could be used to indicate impending 

component failure.  However, the conservative setting may increase the chance of false 

alarms.  The mean value of PC will be varied in Chapter 5 in order to explore sensitivity 

of the simulation results to its value.  Furthermore false positives (false alarms) will also 

be introduced into the simulation in order to observe their impact on the CBM+ process. 
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The Legacy maintenance schedule of the UH-60 Blackhawk 701C Engine 

Assembly will be used to describe the specification of the probabilities of the Legacy 

system discovering a previously generated DS during the downtime with h MMH, PL(h). 

Although the 701C Engine Assembly is used by both the AH-64 Apache and the UH-60 

Blackhawk the two airframes have different maintenance schedules. Listed in Table 8 

below is the maintenance schedule for the UH-60 Blackhawk 701C Engine Assembly 

maintenance schedule as listed in the AMCOM Proof of Principle briefing from June of 

2005. (Brown, 2005) 

 

Table 8. UH-60 Blackhawk 701C Engine Assembly Maintenance Regime 

 

Inspection Reference Maint Type Task or Paragraph MMH 

Pre-Flight TM 1-1520-237-CL PM Not Applicable 0.1 

Post-Flight TM 1-1520-237-CL PM Not Applicable - 

Daily TM 1-1520-237-PMD PM 6.17 0.2 

40 Hr Output Shaft Inspection TM 1-1520-237-23 PM ch 1 sec 7-10.2 0.4 

120 Hr DS Inspection TM 1-1520-237-23 -18 ch 1 sec 7-11.1 3.4 

120 Hr Clean Engine Compressor TM 1-2840-248-23 -18 1.158 thru 1.161 1.6 

350 Hr TM 1-1520-237-PMI PM 6.37, 6.43 5.9 

700 Hr TM 1-1520-237-PMI PM 6.37 - 6.48 12.4 

 

It is evident that the most time intensive inspection occurs every 700 hours and it 

requires 12.4 maintenance man-hours (MMH).  12.4 MMH is the hmax.  We assume the 

probability of detecting a DS during this inspection is PL(700)= PC.  We assume that the 

amount of MMH expended during an inspection, h, is an indication of the probability of 

discovering a DS of PL(h).  We model the probability of detecting a DS for the other 

inspections as follows: 

1.  Set max
max1 ( )h

Lx P h= −  for the known most MMH-intensive inspection; 

2.  Solve for max

1

max(1 ( ))h
Lx P h= − ; 
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3.  The probability of detecting a DS during an inspection lasting h hours is 

max
max( ) 1 (1 ( ))

h
h

L LP h P h= − − .  

Using this methodology and Table 8 the following values are computed for PL(h) 

at differing maintenance inspection intervals. 

 

Table 9. UH-60 Blackhawk 701C Engine Assembly PL 

 
Inspection Interval Maintenance Man-Hours PL(h) 

Baseline* 0.3 0.11 
40 Hour 0.4 0.14 
120 Hour 5 0.84 
350 Hour 5.9 0.89 
700 Hour 12.4 0.99 

* Baseline is summed total of Pre/PostFlight and Daily inspection times 

 

This provides realistic models of varying levels of PL(h) that can be input into the 

simulation. The generation of the times until DS discovery for both processes is detailed 

in Section D below. 

 

C. ANALYTICAL VERSUS STOCHASTIC RESULTS 
Results obtained from the simulation and the analytical formulas are displayed in 

Table 10.  Examination of the results can determine whether or not the simulation model 

and the analytical model results are comparable.  Since DS arrivals drive all other factors 

in this simulation it is important to evaluate the number of DS arrivals during the course 

of 1,250 missions (5,000 flight hours).  The expected number of DSs that are generated 

during 1250 missions is 5000 11.42δγ =  where 65.4*10γ −=  and 1.71δ = . The 

simulation model with 1,000 replications results in a mean number of DSs generated 

equal to 11.34 with a 95% confidence interval of (11.14, 11.54). Thus the generation of 

DSs in the analytical model and the simulation are in good statistical agreement. 

Results from a simulation of the number of mission aborts during 500 missions 

are displayed in Table 10.  Each simulation has 500 replications. The time until a DS is 
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discovered has a geometric distribution with constant probability of success PC.  The time 

until a DS causes a mission abort has a geometric distribution with probability of success 

PA; the two times are assumed independent.  The mean number of system aborts and the 

corresponding expected number of system aborts obtained from the analytical model 

equations (1) and (2) are displayed.  As expected the analytical results fall within the 95% 

confidence interval of the simulation results.  

 

Table 10. Special Case Analytical and Simulation Results 

 
 

 

 

 

 

D. RANDOM NUMBER GENERATION USING CRYSTAL BALL 

The add-in Crystal Ball version 5.5 is used as the random number generator 

(RNG) for this simulation.  Crystal Ball version 5.5 is chosen to provide the random 

numbers for this simulation because Microsoft Excel 2003’s RNG has been shown to 

have insufficient period length and an incorrect implementation of the Wichmann-Hill 

Algorithm. (McCullough and Wilson, 2005)  Crystal Ball is considered one of the 

industry’s leading edge Monte Carlo simulation add-ins for Excel.  It uses a 

multiplicative congruential generator that has a stream of 231-1 pseudo random numbers 

before repeating.  The iteration formula uses the multiplier 62089911.  Crystal Ball 

produces a cycle of random numbers that repeats only after several billion trials. 

(Decisioneering, 2005) 

The times until detection of DSs are generated for the CBM+ process by drawing 

a random variable from an exponential distribution with a mean of 1 and multiplying that 

value by 1

Cθ
then rounding the value up to the next integer;  Cθ  is equal to ln(1 )CP− − .  

This gives the number of downtimes until the DS is discovered.  If the downtime is one, 

the DS is discovered during the downtime immediately following the mission during 

19.77   (19.49, 20.05)19.50PL=.3, PA=.2

11.60   (11.40, 11.80)11.44PC=.7, PA=.2

6.02     (5.87, 6.17)5.99PC=.7, PA=.1

Simulation (95% CI)AnalyticalCase

19.77   (19.49, 20.05)19.50PL=.3, PA=.2

11.60   (11.40, 11.80)11.44PC=.7, PA=.2

6.02     (5.87, 6.17)5.99PC=.7, PA=.1

Simulation (95% CI)AnalyticalCase
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which it was generated.  The generation for ( )L hθ  is based on the maintenance schedule 

for the component.  For example if an arduous inspection occurs every fifty operating 

hours then that is reflected in an increase in the probability a DS is discovered, PL(h), and 

subsequently ( )( )( ) ln 1L Lh P hθ = − − .  The time until detection of a DS for the Legacy 

process is determined by generating an exponential random variable with mean 1, Y, and 

determining the smallest n such that ( ) ( )1 ...L L nY h hθ θ≤ + +  where nh  is the MMH of 

the nth inspection after generation of the DS with 1h  being the MMH for the inspection 

following the mission the DS is generated in. A common independent exponential 

random variable with a mean of 1 is used to generate the time until DS discovery for the 

Legacy process and for the CBM+ process.  The operational time until a DS causes a 

mission abort is generated by drawing an independent random variable from a Weibull 

distribution.  Since the Weibull distribution is a continuous distribution the value is 

rounded up to the nearest whole number.  The time until mission abort and the time until 

DS discovery are then compared and whichever event occurs first is the event that 

happens; the other event is ignored.  If the two discrete times are equal, the mission is 

aborted.  Ni is the number of DSs that originate in a given mission (i).  The simulation is 

designed so that the Ni is identical for both the Legacy and CBM+ processes.  Crystal 

Ball uses the method of inverse transformation to generate both the Exponential and 

Weibull random variables. (Decisioneering, 2005)  
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V. DATA ANALYSIS 

A. VARYING CBM+ SENSOR EFFICIENCY 
One of the measures to evaluate a component for selection to the CBM+ process 

is the level of CBM+ sensor efficiency.  In particular how effective must a CBM+ sensor 

be in discovering DSs to result in a smaller number of aborted missions compared to that 

of the Legacy process.  Varying sensor efficiency is defined as varying the mean 

probability of successfully discovering a particular DS, PC, in the simulation.  Appendix 

E contains tables displaying the statistical summaries of the simulation output for the 

Legacy and CBM+ processes as the CBM+ sensor efficiency mean value is varied from 

0.99 to 0.1.  The value of PC for each generated DS is determined by an independent draw 

from a Beta distribution. Table 11 displays the beta parameter values used in the 

simulation. 

 

Table 11. PC Beta Distribution Parameters 

                     

E(X)=PC VAR(X) αB βB
0.99 0.00037711 25 0.25252525
0.90 0.00312741 25 2.77777777
0.80 0.00496124 25 6.25
0.70 0.00571984 25 10.71428571
0.60 0.00562500 25 16.66666666
0.50 0.00490196 25 25
0.40 0.00377953 25 37.5
0.30 0.00249012 25 58.33333333
0.20 0.00126984 25 100
0.10 0.00035857 25 225  

 

The time until a DS causes a mission abort has a Weibull distribution with mean 

10 and shape parameter αW=1.5. The number of replications in the simulation is set to 

1000.  Although PC is randomized for each DS for the CBM+ process, the values of PL(h) 

are not randomized for the Legacy process and therefore the only changes in the Legacy 

process observed between simulations of different PCs are due to the variability inherent 

in the stochastic nature of the simulation.  In Appendix E the statistical summaries of the 
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simulation output are displayed and indicate very small standard errors for the estimates 

of mean number of mission aborts in the following graphs. 

 

Figure 6.   Mean Number of Mission Aborts out of 1,250 Missions when time until Mission 
Aborts has a Weibull distribution with mean 10 and αW=1.5            
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Figure 7.   Mean Repair Times for 1,250 Missions when time until Mission Aborts has a 
Weibull distribution with mean 10 and αW=1.5 
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As shown in Figures 6 and 7 the CBM+ Process has a smaller mean number of 

system aborts and mean repair time than the Legacy Process until the probability of 

successful discovery of a DS during a downtime for the CBM+ sensor is degraded to 

approximately 12-15%.  This corresponds roughly with the average of  PL(hn) 

(n=1,2,…1,250) where hn is the MMH for the Legacy inspection after mission n that is 

determined using the methodology in Chapter 4; the baseline  PL(h) is determined using 

the sum of the daily, preflight, and postflight inspection MMH requirements.  Since the 

baseline MMH is the most common MMH requirement, the baseline PL(h) is 

approximately equal to the average of PL(h)s.  Abort times depend upon the αW and βW 

Weibull distribution parameters selected for MA as described in Chapter 4.  In the 

examples listed above the mean value selected for MA’s Weibull distribution was 10 with 

shape parameter αW=1.5 and scale βW=11.07732168.  This means that on average it 

requires 2.5 missions for an engine’s diagnostic symptom to become a mission abort 
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situation; the variance of the time until mission abort is 46.8059.  This value was selected 

as a placeholder and does not indicate an actual estimation of engine abort occurrences.  

However, it does serve to illustrate a generic abort behavior as PC is varied as seen in the 

previous two figures. 

 

B. EXAMINING MISSION ABORT TIME VARIANCES 

In this section we explore the effect the variance of the time from when a DS is 

generated until it causes mission abort has on the mean number of mission aborts.  The 

mean time from when a DS is generated until it causes a mission abort is constant for all 

cases studied in this section. The parameters of the Weibull distribution are varied to 

obtain different variances. In this section the parameters of the beta distribution used to 

generate PC for each DS are αB=25 and βB=.25 giving an expected value of PC equal to 

0.99.  The density functions of 3 different Weibull distributions are displayed in Figures 

8, 9, and 10: 

 

Figure 8.   CASE #1 Weibull Density Function (mean=10, αW=.5, βW=5) 
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The Weibull distribution whose density function is displayed in Figure 8 has 

expected value equal to 10 and variance equal to 500. 

 

 



37 

Figure 9.   CASE #2 Weibull Density Function (mean=10, αW=1, βW=10) 
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The Weibull distribution whose density function is displayed in Figure 9 has 

expected value equal to 10 and variance equal to 100.. 

 

Figure 10.   CASE #3 Weibull Density Function (mean=10, αW=1.5, βW=11.08) 
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The Weibull distribution whose density function is displayed in Figure 10 has 

expected value equal to 10 and variance equal to 46.09. 

The results of simulations of the two processes utilizing the three different cases 

of the Weibull distribution of the time from DS generation until it causes mission abort 



38 

with the mean PC equal to 0.99 appear below.  Summary statistics of the simulation 

output appearing in Appendix E indicate very small standard errors for the estimates of 

the fraction of DSs that cause mission abort.  The fraction of DSs that cause mission 

aborts is defined as the number of DSs that actually cause a mission abort divided by the 

total number of DSs that occurred during 1,250 missions.  This divisor is the sum of the 

DSs that caused mission aborts and DSs that did not cause mission aborts.   

CASE #1 (Weibull with mean equal to 10, variance equal to 500, αW=0.5; βW=5) 

The fraction of DSs that causes a mission abort in the Legacy process is 0.64; the 

fraction of DSs that causes a mission abort is 0.37 in the CBM+ process.  Recall that if 

more than one DS can cause a mission to abort, the mission is only aborted once.  This 

means that given these conditions under the Legacy process a DS will result in a mission 

abort 64% of the time, whereas, under the CBM+ process a DS will result in a mission 

abort on 37% of the time. 

CASE #2 (Weibull with mean equal to 10, variance equal to 100, αW=1; βW=10) 

 The fraction of DSs that causes a mission abort in the Legacy process is 0.47; the 

fraction of DSs that causes a mission abort is 0.10 in the CBM+ process.  Recall that if 

more than one DS can cause a mission to abort, the mission is only aborted once.  This 

means that given these conditions under the Legacy process a DS will result in a mission 

abort 47% of the time, whereas, under the CBM+ process a DS will result in a mission 

abort on 10% of the time. 

CASE #3 (Weibull with mean equal to 10, variance equal to 46.09, αW=1.5; 

βW=11.08) 

The fraction of DSs that causes a mission abort in the Legacy process is 0.40; the 

fraction of DSs that causes mission abort is 0.03 in the CBM+ process.  Recall that if 

more than one DS can cause a mission to abort, the mission is only aborted once.  This 

means that given these conditions under the Legacy process a DS will result in a mission 

abort 40% of the time, whereas, under the CBM+ process a DS will result in a mission 

abort on 3% of the time. 
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Thus the number of mission aborts depends on more than just the mean time from 

when a DS is generated until it causes mission abort.   The variance associated with the 

mission abort arrival time can be equally influential.  The CBM+ Process which monitors 

every mission with a high mean probability PC of discovering DSs is most effective in 

preventing mission aborts in all cases but does best when the variance of the time from 

when a DS is generated until it causes mission abort is small. 

 

C. EXAMINING MISSION ABORT TIME VARIANCES WITH DEGRADED 
PC 

In this section, the mean probability an existing DS is discovered during a 

downtime (PC) is degraded from the value of 0.99 (αB=25, βB=.25) to the smaller values 

of 0.50 (αB=25, βB=25) and 0.20 (αB=25, βB=100) in order to study the effect of the 

variance of the time from when a DS is generated until it causes a mission abort with a 

less effective sensor.  The statistical standard errors of the summary statistics of the 

simulation output are displayed in Appendix E.  The results for the Legacy Process 

remain as stated above since a varying PC does not affect the Legacy Process.  For all 

cases the Weibull parameters of the time until an undiscovered DS causes a mission abort 

αW=1.5 and βW=11.08 are held constant. 

CASE #1 (Weibull with mean equal to 10, variance equal to 500, αW=0.5; βW=5) 

This case possesses the largest variance and results in the probability an arriving 

DS will cause a mission abort for the CBM+ process equal to 0.45 (PC=0.50) / 0.57 

(PC=0.20) of the time.  This means that given a PC of 0.50 that a DS will result in a 

mission abort 45% of the time.  Given a PC of 0.20, a DS will result in a mission abort 

57% of the time. 

CASE #2 (Weibull with mean equal to 10, variance equal to 100, αW=1; βW=10) 

This case possesses the middle variance and results in the probability an arriving 

DS will cause a mission abort for the CBM+ process equal to 0.17 (PC=0.50) / 0.35 

(PC=0.20) of the time.  This means that given a PC of 0.50 that a DS will result in a 

mission abort 17% of the time.  Given a PC of 0.20, a DS will result in a mission abort 

35% of the time. 
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CASE #3 (Weibull with mean equal to 10, variance equal to 46.09, αW=1.5; 

βW=11.08) 

This case possesses the smallest variance and results in the probability an arriving 

DS will cause a mission abort for the CBM+ process equal to 0.09 (PC=0.50) / 0.25 

(PC=0.20) of the time.  This means that given a PC of 0.50 that a DS will result in a 

mission abort 9% of the time.  Given a PC of 0.20, a DS will result in a mission abort 

25% of the time. 

These results of examining PC at both 0.50 and 0.20 are consistent with the 

conclusions drawn from examining mission abort arrival time variance when PC is 0.99.  

Furthermore, it is concluded that even a very poor performing sensor (i.e. PC=0.20) when 

compared against the Legacy process reduces the percentage of diagnostic symptoms that 

can result in mission aborts by an average of 10% regardless of the variance of the time 

from when a DS is generated until it can cause a mission abort.  When the PC is at 0.99 

the CBM+ Process reduces the percentage of diagnostic symptoms that can result in a 

mission aborts by an average of 30%-35%.  Legacy process performance data used in the 

comparisons above for these cases is displayed in Appendix E. 

 

D. CBM+ FALSE POSITIVES 
It is worthwhile to explore the consequences of the CBM+ sensor indicating a 

false positive.  Since the Army currently uses only passive sensors whose measurements 

are downloaded at the conclusion of missions a false positive does not impact the mission 

during which it occurs. However, a false positive will require maintenance personnel to 

expend maintenance man-hours in order to determine that nothing is wrong with the 

component.  The time required to inspect (repair) and correctly diagnose a diagnostic 

symptom as a false positive is the same as if it were an actual diagnostic symptom 

recognized immediately after the mission during which it arrived.  This time penalty is a 

random variable drawn from an exponential distribution with a mean of 3 hours.  False 

positives are assumed to occur according to a Poisson process independent of the other 

processes.  Table 12 displays the mean number of false positive arrivals and their 

associated mean inspection (repair) times resulting from a simulation with 1,000 
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replications.  The parameters of the simulation are: αB=25, βB=0.25 (PC=0.99); αW=1.5, 

βW=11.08 (mean time until mission abort is 10 missions).  The total amount of repair 

expended on false positives that appear during an operational time t is a compound 

Poisson process. 

[total repair time] [number of false positives] [repair time per false positive]E E E= ×  

An expanded version of Table 12 appears in Appendix E annotating standard errors.  

 

Table 12. Simulation Results for mean number of False Positive Arrivals and mean 
Inspection (Repair) Time resulting from False Positives for 1,250 missions  

                            

False 
Positive 

Rate
0.9999 ∑FP Mean: 1238.57
0.90 ∑FP Mean: 1115.29
0.80 ∑FP Mean: 990.51
0.70 ∑FP Mean: 866.70
0.60 ∑FP Mean: 743.41
0.50 ∑FP Mean: 620.23
0.40 ∑FP Mean: 495.29
0.30 ∑FP Mean: 372.07
0.20 ∑FP Mean: 247.05
0.10 ∑FP Mean: 124.34

0.0001 ∑FP Mean: 0.14
False 

Positive 
Rate

0.9999 ∑FP Time Mean: 3717.41
0.90 ∑FP Time Mean: 3343.55
0.80 ∑FP Time Mean: 2969.66
0.70 ∑FP Time Mean: 2598.47
0.60 ∑FP Time Mean: 2228.17
0.50 ∑FP Time Mean: 1861.03
0.40 ∑FP Time Mean: 1490.28
0.30 ∑FP Time Mean: 1118.76
0.20 ∑FP Time Mean: 741.94
0.10 ∑FP Time Mean: 371.62

0.0001 ∑FP Time Mean: 0.42

CBM+ PROCESS (NUMBER OF 
FALSE POSITIVE ARRIVALS)

CBM+ PROCESS (REPAIR 
TIME INCURRED DUE TO 

FALSE POSITIVE ARRIVALS)

                           

 

Displayed in Table 13 are the analytical results for the number of false positive 

arrivals and the resulting inspection (repair) time for 1,250 missions. 
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Table 13. Analytical Results for mean number of False Positive Arrivals and mean 
Inspection (Repair) Time resulting from False Positives for 1,250 missions 

False 
Positive 

Rate
0.9999 ∑FP Mean: 1249.88
0.90 ∑FP Mean: 1125.00
0.80 ∑FP Mean: 1000.00
0.70 ∑FP Mean: 875.00
0.60 ∑FP Mean: 750.00
0.50 ∑FP Mean: 625.00
0.40 ∑FP Mean: 500.00
0.30 ∑FP Mean: 375.00
0.20 ∑FP Mean: 250.00
0.10 ∑FP Mean: 125.00

0.0001 ∑FP Mean: 0.13
False 

Positive 
Rate

0.9999 ∑FP Time Mean: 3749.63
0.90 ∑FP Time Mean: 3375.00
0.80 ∑FP Time Mean: 3000.00
0.70 ∑FP Time Mean: 2625.00
0.60 ∑FP Time Mean: 2250.00
0.50 ∑FP Time Mean: 1875.00
0.40 ∑FP Time Mean: 1500.00
0.30 ∑FP Time Mean: 1125.00
0.20 ∑FP Time Mean: 750.00
0.10 ∑FP Time Mean: 375.00

0.0001 ∑FP Time Mean: 0.38

CBM+ PROCESS (NUMBER OF 
FALSE POSITIVE ARRIVALS)

CBM+ PROCESS (REPAIR 
TIME INCURRED DUE TO 

FALSE POSITIVE ARRIVALS)

 

 

As expected the simulation results closely match the analytical results and 

produce a linear relationship as the false positive rate is varied from 0.9999 (false 

positive arriving every mission) to 0.0001 (false positives very rarely occurring). 

Assuming that the Legacy process does not produce a false positive of its own it 

is useful to note that the Legacy process incurs approximately 75 hours in repair time 

every 1,250 missions. The Legacy process expected repair time includes all repair times 

including repair time resulting from mission aborts.  Table 14 displays the mean CBM+ 

Process total repair time (total repair time = diagnostic symptom repair time + false 
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positive repair time) while varying the false positive rate from 0.10 to 0.0001.  The mean 

time until mission abort is 10 missions (αW=1.5, βW=11.08).  An expanded table including 

standard errors is displayed in Appendix E. 

 

Table 14. CBM+ Process mean Total Repair Time (including False Positive Repair 
Time) for 1,250 missions with αB= 25, βB=.25  

False 
Positive 

Rate

0.10 ∑R+∑FP Time Mean: 406.13
0.09 ∑R+∑FP Time Mean: 369.59
0.08 ∑R+∑FP Time Mean: 330.84
0.07 ∑R+∑FP Time Mean: 291.50
0.06 ∑R+∑FP Time Mean: 257.54
0.05 ∑R+∑FP Time Mean: 221.93
0.04 ∑R+∑FP Time Mean: 185.08
0.03 ∑R+∑FP Time Mean: 146.10
0.02 ∑R+∑FP Time Mean: 108.97
0.01 ∑R+∑FP Time Mean: 71.91

0.0001 ∑R+∑FP Time Mean: 36.06

CBM+ PROCESS (TOTAL REPAIR 
TIME=DS REPAIR TIME+FALSE 

POSITIVE REPAIR TIME)

 

 

Figure 11 is a graphical display of the total mean repair time of the Legacy and 

CBM+ Process as the false positive rate is varied from .05 to .0001. 
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Figure 11.   Mean Total Repair Time for 1,250 Missions while varying the False Positive rate 
from .05 to .0001 

Mean Total Repair Time for 1,250 Missions while varying 
the False Positive rate from .05 to .0001
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Figure 11 illustrates the importance of limiting the number of false positives that 

the CBM+ sensor incurs.  This simulation was run with a mean probability of DS 

discovery during a downtime equal to PC=0.99 (a highly accurate sensor) yet when false 

positive rates begin to increase any advantage in repair time provided by the sensor is 

quickly lost; the parameters of the beta distribution for PC are αB=25 and βB=.25. The 

parameters of the Weibull distribution are αW=1.5 and βW=11.08 (mean time until mission 

abort is 10 missions). 

 

E. LOGISTICAL IMPLICATIONS OF VARYING PC 

It is possible to utilize this simulation to gain insights into the logistical 

implications of utilizing the CBM+ Process versus the traditional Legacy Process.  The 

following is a general description of the logistics process.  An assumption made is that 

once a DS occurs that the time remaining until mission abort is known; this is very 

optimistic.  Another assumption is that there is only mission per day and that a mission 

occurs every day.  This is differs from the current implementation of  CBM+ ;  once a 
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component shows degraded performance it is removed; the  time until failure is not 

known.  For the case of a mean time until a replacement component arrives of 3 

days (assuming one mission for every day) the following process is used: 

1.  A DS is detected. 

2.  If remaining time until a mission abort is greater than or equal to the time to 

fly 3 missions the 3 missions will be flown. The following events occur: 

a. A replacement component is ordered and arrives before there is a mission abort; 

there is no time with aircraft down waiting for the replacement  part (TOH).  Since one 

mission is flown per day, the time until the replacement component arrives is three days. 

This assumes both the number of missions until mission abort is known and the time until 

the replacement component arrives is constant and known. This fixed time is an 

approximate of the prognostics capability of the CBM+ sensor and can be modified as 

further research is done in this area. 

3.  If the remaining time until a mission abort is less than the time to fly 3 

missions, the aircraft will not fly until the failing component is replaced.  A Bernoulli 

random variable is generated with probability of success POH (probability component is 

on hand): 

a.  If a replacement component is on hand, there is no aircraft downtime waiting 

for the replacement component. 

b.  If component is not on hand an exponential time with mean of 3 is generated to 

determine TOH (time in days spent awaiting component). 

The following charts illustrate two cases.  The first case is when a component 

requires a mean of 3 days to arrive once ordered and the second case is when a 

component requires a mean of 10 days to arrive once ordered.  Through examining these 

two situations conclusions can be drawn concerning the effect of a CBM+ sensor on the 

component ordering time requirements.  When a DS is discovered, the number of future 

missions that can be flown before a mission abort is calculated. One mission is flown per 

day. Thus the number of additional missions that can be flown is compared to the mean 

number of days until a replacement component can arrive. If the number of missions that 
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can be flown without a mission abort is less than the mean number of days until a 

replacement component arrives, then an independent Bernoulli random variable is 

generated to determine if the replacement component is on hand.  If the component is not 

immediately available then an Exponential distribution is used to determine the amount 

of time required for component arrival.  These random numbers are independent for the 

Legacy and CBM+ processes.  POH will be used to represent the probability that a 

replacement component is on hand at the location of the unit requiring the component; 

when a DS is discovered whether or not a replacement component is at the location is 

independent from DS to DS. There is no randomization of the probability a replacement 

component is available.  The value of POH will be varied from .9999 to .0001 in order to 

compare the mean number of days awaiting replacement components for both the CBM+ 

system and the Legacy system. The number of missions is 1,250 and there are 1,000 

replications.  The parameters of the CBM+ process are αB=25 and βB=.25.  The 

parameters of the Weibull distribution are αW=1.5, βW=11.08 (the mean time until mission 

abort is 10 missions).  Upon the occurrence of a mission abort or if the DS is discovered 

but it is not at least 3 days before the mission abort were to occur (CASE #1) or ten days 

before the mission abort were to occur (CASE #2) then a Bernoulli random variable is 

generated to determine whether or not the component is on hand (POH) and if the 

component is not on hand then an exponential distribution with mean 3 days (CASE #1) 

or 10 days (CASE #2) is used to determine the number of days spent awaiting component 

(TOH).  Summary statistics of the simulation output appear in Appendix E.  The standard 

errors of the mean number of days expended until a replacement component arrives are 

small and this information is located in Appendix E for all graphs listed in the remainder 

of Chapter 5. 

1. 3 Day Mean Component Ordering Time 

The first case examines three different PC levels for the CBM+ Process.  The first 

PC level is .99. The mean number of days expended awaiting replacement components as 

the POH is varied from .9999 to .0001 are displayed in Figure 12.  DSs causing mission 

aborts are included. 
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Figure 12.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.99 and Mean Time until replacement component arrives=3 days 

Mean Number of Days Expended Awaiting Replacement Components varied 
by Probability Replacement Component in Stock for 1,250 missions

Probability of CBM+ Detection = .99
Mean Order Time (Exponential) = 3 days
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Figure 12 shows that if the remaining time until component failure is known 

perfectly then utilizing the CBM+ Process and having no the components on hand when 

PC is .99 is equivalent to keeping approximately enough of the components on hand 

under the Legacy Process to have a replacement component immediately available 70% 

of the time.  The reason the mean time expended waiting for replacement components is 

so different between the two processes is that since the CBM+ process discovers DSs so 

much earlier on average than the Legacy process, the CBM+ process is able to order the 

component before the component fails.  The Legacy process does not have this advantage 

since it will either not detect until a mission abort or once a DS is discovered it is too late 

to order the component before the component fails. Figures 13 and 14 display the mean 

delay time until replacement components arrive, for PC equal to 0.50 (respectively 0.20); 

if the remaining time until component failure is known perfectly, then the result for the 

case the CBM+ process has no components on hand is the same that for the Legacy 

process that has enough components at the location to replace 60% (respectively  30%) of 

the discovered DSs at their time of discovery. 
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Figure 13.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.50 and Mean Order Time=3 days 

Mean Number of Days Expended Awaiting Replacement Components 
varied by Probability Replacement Component in Stock for 1,250 missions

Probability of CBM+ Detection = .50
Mean Order Time (Exponential) = 3 days
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Figure 14.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.20 and Mean Order Time=3 days 

 

 

         

 

 

 

 

 

 

 

 

Mean Number of Days Expended Awaiting Replacement Components 
varied by Probability Replacement Component in Stock

Probability of CBM+ Detection = .20
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2. 10 Day Mean Component Ordering Time 

If the mean time of the exponential ordering time is increased to 10 days this will 

provide insight into the advantage of utilizing the CBM+ Process for a component that is 

not as readily available in the Army’s logistical system.   

A review of Figures 15, 16, and 17 show that if the remaining time to component 

failure is known when the PC is .99 / .50 / .20 and no components are kept on hand that 

the equivalent mean wait time for ordered components is the same for keeping enough on 

hand under the Legacy Process to have this component available 30% / 20% / 10% of the 

time respectively.  This suggests that if a component is to be chosen for entry in the 

CBM+ Process it is more beneficial to choose a component that can be shipped faster and 

not one that requires longer to arrive to the organization requiring the replacement 

component.  The advantage that the CBM+ Process delivers is that it gives the maintainer 

advance warning that a component will fail in the near future.  If the component can be 

ordered when a diagnostic symptom is recognized and sent to the organization requiring 

the component before the component causes mission abort then great savings in on hand 

stockage requirements can be realized; this assumes that the remaining time until mission 

abort can be predicted with accuracy.  If the aircraft is grounded until replacement parts 

become available then the CBM process is comparable to the Legacy process.   However, 

if the component requires a longer time to arrive then this advantage that the CBM+ 

Process possesses over the Legacy Process still exists but is diminished.   
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Figure 15.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.99 and Mean Order Time=10 days 

Mean Number of Days Expended Awaiting Replacement 
Components varied by Probability Replacement Component in 

Stock for 1,250 missions
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Figure 16.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.50 and Mean Order Time=10 days 

Mean Number of Days Expended Awaiting Replacement Components 
varied by Probability Replacement Component in Stock for 1,250 

missions
Probability of CBM+ Detection = .50

Mean Order Time (Exponential) = 10 days
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Figure 17.   Mean Number of Days Expended Awaiting Replacement Components where 
PC=.20 and Mean Order Time=10 days 

Mean Number of Days Expended Awaiting Replacement Components varied 
by Probability Replacement Component in Stock for 1,250 missions

Probability of CBM+ Detection = .20
Mean Order Time (Exponential) = 10 days
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VI. RESULTS AND CONCLUSIONS 

A. APPLICATIONS 
A model of the Legacy maintenance/repair process and the CBM+ maintenance 

/repair process has been presented.  The model assumes that prior to a component failure, 

a measurable diagnostic symptom (DS) appears. Once a DS is generated, it remains 

measurable and can be detected by a CBM+ sensor or by physical inspection (Legacy 

process).  The model output includes the number of missions that are aborted and the 

repair time incurred by component failures and false positives.  By comparing two or 

more different components it is possible to determine which component will produce 

more favorable results in terms of mission abort rates and repair time expenditures by 

introducing it into the CBM+ process.  Furthermore, patterns and behaviors can be 

observed as conditions vary thereby providing insight and information to be used by the 

decision-maker. 

The following factors are influential to the successful introduction of a component 

in a CBM+ program: 

1.  Since the CBM+ sensor is continually monitoring a component, the sensor 

doesn’t have to have an extremely high level of probability of detection of diagnostic 

symptoms; this result assumes that the probability of detection of a DS is independent 

from mission to mission. It also assumes that once a DS has occurred it remains 

detectable; that is measurable evidence of the DS is not intermittent.  Simply by 

providing a level of detection for every mission that exceeds the baseline (the daily pre-

flight and post-flight inspections) probability of detection provided by the Legacy 

Process the CBM+ Process will show a substantial increase in the maintainer’s ability to 

recognize and mitigate impending mission aborts.  However, this advantage will decrease 

if the sensor produces false alarms.  

2.  When selecting a component for entry in the CBM+ Process more than just a 

comparison of the mean times between the arrival of a diagnostic symptom until 

development of a mission abort are required.  The variance of the mean time until 

mission abort given that a diagnostic symptom has occurred is equally important.  A 
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CBM+ sensor may be less effective if the time from when a DS is generated until it 

causes a mission abort has a high variance.  This finding remains true for degraded levels 

of mean probability a DS is discovered, PC.  Data concerning the time from when a DS is 

generated until component failure would be very informative in judging whether to 

include a component in the CBM+ process. 

3.  Whereas a component’s CBM+ sensor doesn’t need an extremely high 

probability of detection that a DS has occurred, it is extremely important that false 

positives be kept to extremely low levels.  Otherwise, the advantage of continual 

inspection using sensors begins to work against the CBM+ Process.  If a component 

whose CBM+ sensor provides a fair number of false positives (i.e. 5% of the missions 

result in a false positive) the time spent by maintenance personnel confirming that the DS 

was in fact a false positive quickly overshadows any gains in actual repair times. 

To reiterate some factors to consider when considering introducing a component 

to the CBM+ process from Chapter 3: 

1. How often does the component fail during active flight hours? 

It is preferable to introduce a component that fails often versus components that 

rarely fail. 

2. What are the consequences of a component failing? 

It is preferable to introduce a component that possesses severe consequences for 

failure versus a component that is inconsequential in its failure. 

3. What is the difficulty level of the inspection that would be alleviated by 

CBM+? 

If an inspection is extremely difficult and resource intensive to perform, it would 

be preferable to have this inspection replaced by CBM+ versus an inspection that is 

simple and easy to perform. 

4.  Is a CBM+ sensor feasible for a component? 

If measurements cannot be taken to assess the degradation of the component 

before it fails, i.e. no useful DS, then that component would not be a good CBM+ 
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candidate.  Furthermore, the time from when the occurrence of measurable evidence of 

impending failure until failure should be long enough to detect the impending failure and 

take maintenance action.    

5. What is the reliability of the CBM+ sensor, the difficulty of inspecting the 

CBM+ sensor, and the effect of the CBM+ sensor on performance of the component 

being monitored?  Is there a CBM+ sensor currently developed for a component? What is 

the cost of the sensor? 

 

B. RECOMMENDATIONS FOR FUTURE STUDY 

Models for the following random variables are selected as placeholders. 

Collection and analysis of data are needed to provide more appropriate models. 

1. MA: (time from when a DS occurs until it causes a mission abort) A Weibull 

distribution with a mean of 10 hours was selected.  The distributional form is conjectural.  

Experiments need to be designed and conducted to collect data concerning the time from 

when a DS is generated by a component until the DS causes the component to fail. It is 

also important to collect data on the time from when a DS is generated until the sensor 

detects the DS. 

2.  R0: (initial repair time) An Exponential distribution with a mean of 3 hours 

was selected.  This provided the initial mean repair time incurred upon a DS discovery.  

3.  R1: (subsequent fixed repair time) A fixed value of 3 hours was chosen.  This 

provided for an additional repair time if the DS was not discovered after the first mission 

in which it arrived.  This value was only applied once.  For example, R1 was the same if 

the DS was discovered after the second mission it appeared or the tenth mission after it 

appeared. 

4.  A0: (initial repair time resulting from a mission abort) An Exponential 

distribution with a mean of 5 hours was selected.  This provided mean repair time 

incurred upon a mission abort. 

5.  A1: (subsequent fixed repair time resulting from a mission abort) A fixed value 

of 5 hours was chosen.  This provided for an additional repair time if the DS that caused 
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the mission abort was not discovered after the first mission in which it arrived.  This 

value was only applied once.  For example, A1 was the same if the DS was discovered 

after the second mission it appeared or the tenth mission after it appeared. 

It is also important to conduct a study of the reliability and maintainability of the 

CBM+ sensors.  It is envisioned that CBM+ sensors will eliminate the need for scheduled 

inspection and maintenance. A sensor may be able to detect the occurrence of a DS; 

however, if the sensor is experiences failure often and is difficult to inspect and maintain, 

the effectiveness of the sensor will be diminished.  In addition it is important to study the 

ability of the logistics process to respond to the sensor measurements.  If it takes a long 

time to analyze sensor measurements and/or obtain replacement components, then the 

attractiveness of introducing a component into CBM is lessened.  The cost of the sensor 

also needs to be considered. 
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APPENDIX A. AH-64/UH-60 701C ENGINE DATA 

SN EI_SN MODEL Date 
REP_NU

M 
CE
N LIFE TSN F_TYPE 

FCOD
E Failure FAMILY

GEE76106
7 9126370 MH-60K 5/17/2001 1 0 944 944

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76106
7 8926194 MH-60K 2/19/2002 2 0 231 

117
8 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76106
7 9426547 MH-60L 1/8/2003 3 0 246 

142
6 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76106
7 9026285 MH-60L 3/9/2004 4 0 285 

171
2 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76106
7 9026285 MH-60L 8/5/2005 4 0 372 

208
5 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

5
3
7

GEE76115
8 9026295 UH-60L 

10/11/200
1 1 0 1873

187
3 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76115
8 9226426 UH-60L 9/26/2002 2 0 256 

212
9 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

5
3
7

GEE76115
8 8900227 AH-64A 3/15/2003 3 0 245 

237
4 

C1_REMOVA
L 585 SHEARED Op/FOD

3
7
4

GEE76115
8 9626689 UH-60L 9/10/2003 4 1 1034

237
6 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
8
5

GEE76125
9 9126329 UH-60L 2/14/2001 1 0 1573

157
3 

C1_REMOVA
L 790 

OUT OF 
ADJUSTMT,OUT OF 

TOLERA Tol/Bal 

GEE76125
9 8900235 AH-64A 3/11/2003 2 0 412 

198
6 

C1_REMOVA
L 372 

METAL ON 
MAGNETIC PLUG  

7
9
0

GEE76125
9  

UNKNOW
N 2/10/2004 3 0 249 

223
5 C3C2ACT 20 

WORN 
EXCESSIVELY 

Rem 
Unkn 

3
7
2

GEE76125
9 9000482 AH-64A 9/15/2004 4 1 339.8

234
9 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect 0

GEE76170
5 9705043 AH-64D 2/22/2002 1 0 1729

172
9 

C1_REMOVA
L 705 

BEYOND 
SPECIFIED 

TOLERANCE Tol/Bal 

GEE76170
5  

UNKNOW
N 

11/29/200
3 2 0 254 

198
8 C3C2ACT 181 

LOW 
COMPRESSION 

Rem 
Unkn 

7
0
5

GEE76170
5  

UNKNOW
N 8/19/2004 3 0 97 

208
5 C3C2ACT 855 HEAT DAMAGE 

Rem 
Unkn 0

GEE76170
5 5201 AH-64D 8/19/2004 4 1 305.8

208
5 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect 0

GEE76173
5 9000294 AH-64A 

12/11/200
1 1 0 1769

176
9 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

GEE76173
5 9000294 AH-64A 7/18/2003 2 0 393 

216
3 

C1_REMOVA
L 329 STARTING STALL  

3
7
4

GEE76173
5  

UNKNOW
N 2/4/2005 3 0 165 

233
0 C3C2ACT 230 DIRTY 

Rem 
Unkn 

3
2
9

GEE76173
5 9926829 UH-60L 2/8/2005 4 1 106.5

233
0 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect 0

GEE76174
5 9000306 AH-64A 

10/24/200
2 1 0 1812

181
2 

C1_REMOVA
L 519 SURGED  

GEE76174
5  

UNKNOW
N 8/11/2003 2 0 106 

192
0 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

5
1
9
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GEE76174
5  

UNKNOW
N 1/24/2004 3 0 125 

204
5 C3C2ACT 230 DIRTY 

Rem 
Unkn 0

GEE76174
5 9326486 UH-60L 3/2/2004 4 0 5 

205
0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 0

GEE76174
5 9326525 UH-60L 2/1/2005 4 0 284 

233
6 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

5
3
7

GEE76174
5 9626678 UH-60L 9/10/2005 4 1 136.5

234
0 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

3
7
4

GEE76181
6 9126373 MH-60K 9/6/2002 1 0 2055

205
5 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76181
6 9026293 UH-60L 5/22/2003 2 0 129 

218
4 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76181
6 9126363 MH-60L 

11/24/200
3 3 0 144 

232
9 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76181
6 9126360 MH-60L 6/5/2004 4 0 61 

239
0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76181
6 8926184 MH-60L 5/9/2005 4 0 236 

262
6 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76181
6 8926184 MH-60L 6/8/2005 4 1 118.7

262
6 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76205
5 9126379 MH-60K 4/22/2002 1 0 2027

202
7 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76205
5 9126379 MH-60K 3/24/2003 2 0 239 

226
7 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76205
5  

UNKNOW
N 9/17/2005 3 0 329 

284
1 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

5
3
7

GEE76205
5 305400 AH-64D 1/3/2006 4 1 

2838.
9 

284
1 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect 0

GEE76228
7  

UNKNOW
N 1/8/2001 1 0 1379

137
9 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

GEE76228
7 9826825 UH-60L 8/20/2002 2 0 487 

186
6 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 0

GEE76228
7 8926182 UH-60L 9/10/2003 3 0 172 

204
2 

C1_REMOVA
L 180 CLOGGED  

5
3
7

GEE76228
7 9026294 UH-60L 5/12/2004 4 0 223 

226
5 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

1
8
0

GEE76228
7 

UNKN@L
2 

UNKNOW
N 1/4/2005 4 1 250.6

226
7 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76238
5 9326503 UH-60L 9/25/2002 1 0 1549

154
9 

C1_REMOVA
L 290 

FAILS 
DIAGNOSTIC/AUTO

MATIC TE HeaterBk

GEE76238
5 9426583 UH-60L 2/2/2004 2 0 50 

159
9 

C1_REMOVA
L 70 BROKEN Broken 

2
9
0

GEE76238
5 9426558 UH-60L 2/18/2005 3 0 346 

194
5 

C1_REMOVA
L 307 OIL LEAK  

7
0

GEE76238
5 9426587 UH-60L 7/27/2005 4 1 283.1

194
5 INSTALLED 307 OIL LEAK  

3
0
7

GEE76243
6  

UNKNOW
N 2/16/2001 1 0 1413

141
3 C3C2ACT 381 LEAKING (LIQUID)

Rem 
Unkn 

GEE76243
6  

UNKNOW
N 

10/11/200
3 2 0 514 

192
7 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 0

GEE76243
6 305368 AH-64D 5/5/2005 3 0 102 

206
7 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7
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GEE76243
6 205319 AH-64D 5/17/2005 4 1 241.2

206
7 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76244
0  

UNKNOW
N 

11/13/200
2 1 0 1488

148
8 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

GEE76244
0 9226452 UH-60L 

10/28/200
3 2 0 236 

172
4 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 0

GEE76244
0 205295 AH-64D 

11/17/200
4 3 0 251 

197
5 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

5
3
7

GEE76244
0 9026250 UH-60L 

11/28/200
5 4 1 23.9

197
8 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

3
7
4

GEE76252
3  

UNKNOW
N 12/9/2002 1 0 1432

143
2 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

GEE76252
3 9226452 UH-60L 6/6/2003 2 0 124 

155
6 

C1_REMOVA
L 181 

LOW 
COMPRESSION Debond 0

GEE76252
3 9626685 UH-60L 11/3/2004 3 0 352 

192
1 

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

1
8
1

GEE76252
3 9905114 AH-64D 9/15/2005 4 1 209.6

192
6 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

3
8
1

GEE76260
6 9426561 UH-60L 9/9/2003 1 0 2115

211
5 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76260
6 9426561 UH-60L 12/9/2003 2 0 14 

212
9 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76260
6 9526597 UH-60L 3/1/2004 3 0 5 

213
4 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76260
6 9426552 UH-60L 7/13/2004 4 1 576.8

213
6 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76299
3  

UNKNOW
N 

11/22/200
2 1 0 1082

108
2 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

GEE76299
3  

UNKNOW
N 

10/23/200
3 2 0 149 

123
0 C3C2ACT 181 

LOW 
COMPRESSION 

Rem 
Unkn 0

GEE76299
3 9705046 AH-64D 4/30/2004 3 0 135 

136
5 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 0

GEE76299
3 9705046 AH-64D 5/20/2004 4 1 

1159.
6 

148
6 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76302
8 9026269 UH-60L 2/2/2002 1 0 956 956

C1_REMOVA
L 307 OIL LEAK  

GEE76302
8 9626674 UH-60L 

10/26/200
4 2 0 140 

109
6 

C1_REMOVA
L 315 

RPM 
FLUCTUATION/INC

ORRECT  

3
0
7

GEE76302
8 9626682 UH-60L 

12/27/200
4 3 0 0 

109
6 

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

3
1
5

GEE76302
8 9626676 UH-60L 9/23/2005 4 0 374 

147
0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

3
8
1

GEE76310
2 9705041 AH-64D 6/29/2005 1 0 0 0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76310
2 9705041 AH-64D 6/29/2005 2 0 1970

197
0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

5
3
7

GEE76310
2  

UNKNOW
N 9/11/2005 3 0 2 

197
2 C3C2ACT 537 

LOW POWER OR 
TORQUE 

Rem 
Unkn 

5
3
7

GEE76310
2 305347 AH-64D 

12/31/200
5 4 1 0 

197
2 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect 0

GEE76326
0 9826805 UH-60L 2/23/2001 1 0 696 696

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

GEE76326
0 9826805 UH-60L 2/21/2002 2 0 271 967

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

3
7
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4

GEE76326
0 9826805 UH-60L 6/16/2003 3 0 499 

146
9 

C1_REMOVA
L 855 HEAT DAMAGE HeaterBk

5
3
7

GEE76326
0 9426587 UH-60L 

10/20/200
3 4 0 171 

164
0 

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

8
5
5

GEE76326
0 9605015 AH-64D 1/10/2005 4 1 573.5

164
3 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
3
7

GEE76330
1 9826823 UH-60L 5/8/2003 1 0 983 983

C1_REMOVA
L 290 

FAILS 
DIAGNOSTIC/AUTO

MATIC TE HeaterBk

GEE76330
1 9826805 UH-60L 8/30/2003 2 0 163 

114
6 

C1_REMOVA
L 20 

WORN 
EXCESSIVELY Erosion

2
9
0

GEE76330
1 9826826 UH-60L 1/15/2004 3 0 134 

128
0 

C1_REMOVA
L 374 INTERNAL FAILURE Assembly

2
0

GEE76330
1 9026294 UH-60L 5/27/2004 4 0 35 

131
8 

C1_REMOVA
L 105 

LOOSE BOLTS, 
NUTS, SCREWS Assembly

3
7
4

GEE76330
1 8926182 UH-60L 

12/30/200
4 4 0 58 

137
6 

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

1
0
5

GEE76330
1 9526603 UH-60L 4/19/2005 4 1 115 

137
8 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

3
8
1

GEE76338
3 9426558 UH-60L 3/8/2003 1 0 742 742

C1_REMOVA
L 537 

LOW POWER OR 
TORQUE Other 

GEE76338
3 9926830 UH-60L 8/25/2004 2 0 513 

125
5 

C1_REMOVA
L 513 

STALLS, 
COMPRESSOR  

5
3
7

GEE76338
3 9226448 UH-60L 

11/16/200
4 3 0 1 

125
6 

C1_REMOVA
L 513 

STALLS, 
COMPRESSOR  

5
1
3

GEE76338
3 9126332 UH-60L 8/10/2005 4 1 104.2

125
9 INSTALLED 799 

NO DEFECT-
SERVICEABLE NoDefect

5
1
3

GEE76340
1 9426575 UH-60L 12/1/2001 1 0 422 422

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

GEE76340
1 9426569 UH-60L 3/27/2003 2 0 266 689

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

3
8
1

GEE76340
1 9426568 UH-60L 9/11/2003 3 0 3 692

C1_REMOVA
L 381 LEAKING (LIQUID) AirLeak

3
8
1

GEE76340
1 9426577 UH-60L 11/7/2003 4 0 4 696

C1_REMOVA
L 307 OIL LEAK  

3
8
1

GEE76340
1 9526649 UH-60L 7/14/2005 4 0 108 806

C1_REMOVA
L 513 

STALLS, 
COMPRESSOR  

3
0
7
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APPENDIX B.  ESTIMATED INTENSITY FUNCTIONS USING 
ENGINES WITH 3 OR MORE OBSERVED FAILURES 

The table and figure in this Appendix are taken from Professor Patricia A. Jacobs’ 

“A Nonhomogeneous Poisson process model (NHPP) for engine data” written 27 March 

2006. 
Estimated intensity function for engines with at least 3 recorded failures 

Age interval Number of  failures 
(number of engines) Estimated failure rate 

0 500 2 
(21) 0.00019 

501 1000 10 
(20) 0.001 

1001 1500 19 
(20) 0.0019 

1501 2000 21 
(18) 0.0023 

2001 2500 16 
(9) 0.0036 

2501 3000 2 
(2) 0.002 

           

Logarithm of a estimated intensity function for engines with at least 3 failures
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Estimated intensity functions (over intervals of length 500 hrs)using engines with 3 or more 
observed failures

(# failures during the age interval)/(500*(# engines at risk))
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APPENDIX C.  ESTIMATION OF γ  AND δ  

Let ( ){ }; 0N t t ≥ be a NHPP with mean value function ( )t tδγΛ =  having 

intensity function ( ) 1t tδλ γδ −= . There are K systems. The kth system has kn  observed 

times of failure; the ith failure occurs at time ikt . The kth system is observed for a time  

kT . Maximum likelihood can be used to estimate the parameters. 

The likelihood function is 

( ) ( ){ }
1 1

exp
knL

ik k
k i

L t Tλ
= =

= −Λ∏∏     (A1) 

Taking logarithms results in the log likelihood 

( ) ( ) ( ) ( )
1 1 1 1 1

, ln ln 1
knK K K K

k k ik k
k k k i k

n n t Tδγ δ γ δ δ γ
= = = = =

= + + − −∑ ∑ ∑∑ ∑  (A2) 

Partial differentiation of the log-likelihood results in  

( )
1 1

, 1 K K

k k
k k

n T
γ δ
γ γ = =

∂
= −

∂ ∑ ∑      (A3) 

Setting the partial derivative equal to 0 and solving results in  

1

1

K

k
k
K

k
k

n

Tδ
γ =

=

=
∑

∑
     (A4) 
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( ) ( )

( )

1 1 1 1

1

1 1 1 1

1

, 1 ln

1 ln

k

k

nK K K

k ik k k
k k i k

K

knK K K
k

k ik k kK
k k i k

k
k

n t T T

n
n t T T

T

δ

δ

δ

γ δ
γ

δ δ

δ

= = = =

=

= = = =

=

∂
= + −

∂

= + −

∑ ∑∑ ∑

∑
∑ ∑∑ ∑

∑

  (A5) 

Setting the partial derivative equal to 0 results in an equation that can be solved 

numerically providing an estimate of δ  and γ . 

The second partial derivative of the log-likelihood result in 

( )
2

1
ln

K

k k
k

T Tδ

δ γ =

∂
=

∂ ∂ ∑      (A6) 

2

2 2
1

1 K

k
k

n
γ γ =

∂
= −

∂
∑      (A7) 

( )
2 2

2 2
1 1

1 ln
K K

k k k
k k

n T Tδγ
δ δ = =

∂
⎡ ⎤= − − ⎣ ⎦∂

∑ ∑   (A8) 

The second derivatives can be used to obtain estimates of the asymptotic variance of 

estimates of γ  and δ  using Fisher information evaluated at the parameter estimates.  

(Crowder, 1991) 
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APPENDIX D.  VISUAL BASIC FOR APPLICATIONS CODING 

Sub CBM() 
 
' CBM Macro 
' Macro recorded 3/31/2006 by Stephen E. Gauthier 
' 
' Documentation:  LT Jason Kratz (NPS student) provided exceptional 
' assistance with this code by proofreading and finding many ways to 
' improve upon it's processing speed. 
 
'This keeps workbook from updating every iteration 
Application.ScreenUpdating = False 
   With Application 
      .Calculation = xlManual 
      .MaxChange = 0.001 
   End With 
ActiveWorkbook.PrecisionAsDisplayed = False 
 
'This computes Theta L and sets number of missions to 1250 
Sheets("Legacy Process").Select 
NumberMissions = 1250 
NewMissionLength = 0 
Worksheets("Legacy Process").Range(Cells(8, 1), Cells(7 + 
NumberMissions, 1)).ClearContents 
Dim ThreeJArray(9) As Double 
Dim FourJArray(9) As Double 
 
For j = 1 To 9 
   ThreeJArray(j) = Worksheets("Legacy Process").Cells(3, j) 
   FourJArray(j) = Worksheets("Legacy Process").Cells(4, j) 
Next j 
 
For i = 1 To NumberMissions 
   NewMissionLength = NewMissionLength + 4 
    
   For j = 1 To 5 
      If ThreeJArray(j) = 0 Then 
         Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(1) 
      End If 
             
      If ThreeJArray(j) > 0 Then 
         multiplier = 0 
         multiplier = 
Application.WorksheetFunction.RoundDown(NewMissionLength / 
ThreeJArray(j), 0) 
         Worksheets("Legacy Process").Cells(1, 1) = multiplier 
      End If 
             
      If NewMissionLength = multiplier * ThreeJArray(j) Then 
         Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j) 
 
      ElseIf NewMissionLength - 1 = multiplier * ThreeJArray(j) Then 
         Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j) 
             
      ElseIf NewMissionLength - 2 = multiplier * ThreeJArray(j) Then 
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         Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j) 
             
      ElseIf NewMissionLength - 3 = multiplier * ThreeJArray(j) Then 
         Worksheets("Legacy Process").Cells(7 + i, 1) = FourJArray(j) 
      End If 
         
   Next j 
     
Next i 
 
'This clears Data Worksheet below Row 24 and left of and including 
Column 36 
Sheets("Data").Select 
M = NumberMissions 
N = 36 
Worksheets("Data").Range(Cells(25, 1), Cells(24 + M, N)).ClearContents 
 
'This sets the number of iterations to perform 
Replications = Worksheets("RVs").Cells(1, 2) 
For v = 1 To Replications 
Calculate 
 
'This clears N, M, R, and AS Columns of Legacy Process Worksheet 
Sheets("Legacy Process").Select 
N = 3 
Worksheets("Legacy Process").Range(Cells(8, 12), Cells(7 + M, 11 + 
N)).ClearContents 
Worksheets("Legacy Process").Range(Cells(8, 24), Cells(7 + M, 23 + 
N)).ClearContents 
Worksheets("Legacy Process").Range(Cells(8, 35), Cells(7 + M, 34 + 
N)).ClearContents 
Worksheets("Legacy Process").Range(Cells(8, 46), Cells(7 + M, 45 + 
N)).ClearContents 
 
 
'This computes Sum of Dij and Rij for cases <= and > M 
Sheets("Legacy Process").Select 
NCount = 0 
RTime = 0 
N = 7 
   For i = 1 To M 
      If Worksheets("Legacy Process").Cells(7 + i, 4) > 0 Then 
         NewNCount = 0 
         NCount = 0 
         NewNCount2 = 0 
         NCount2 = 0 
         NewNCount3 = 0 
         NCount3 = 0 
         NewNCount4 = 0 
         NCount4 = 0 
         NewRTime = 0 
         RTime = 0 
         NewRTime2 = 0 
         RTime2 = 0 
         NewASTime = 0 
         ASTime = 0 
         ASTime2 = 0 
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         NewASTime2 = 0 
         temp2 = Worksheets("Legacy Process").Cells(7 + i, 2) 
          
         For j = 1 To N 
            temp4 = Worksheets("Legacy Process").Cells(7 + i, 4 + j) 
            temp16 = Worksheets("Legacy Process").Cells(7 + i, 16 + j) 
            temp27 = Worksheets("Legacy Process").Cells(7 + i, 27 + j) 
            temp38 = Worksheets("Legacy Process").Cells(7 + i, 38 + j) 
             
            If temp4 < temp16 Then 
               If temp4 > 0 And temp2 + temp4 <= M + 1 Then 
                  NewNCount = 1 
                  NCount = NewNCount + NCount 
               End If 
               If temp4 > 0 And temp2 + temp4 > M + 1 Then 
                  NewNCount2 = 1 
                  NCount2 = NewNCount2 + NCount2 
               End If 
               If temp2 + temp4 <= NumberMissions + 1 Then 
                  NewRTime = temp27 
                  RTime = NewRTime + RTime 
                  NewASTime = temp38 
                  ASTime = NewASTime + ASTime 
               End If 
               If temp2 + temp4 > NumberMissions + 1 Then 
                  NewRTime2 = temp27 
                  RTime2 = NewRTime2 + RTime2 
                  NewASTime2 = temp38 
                  ASTime2 = NewASTime2 + ASTime2 
               End If 
            Else 
               If temp16 > 0 And temp2 + temp16 <= M + 1 Then 
                  NewNCount3 = 1 
                  NCount3 = NewNCount3 + NCount3 
               End If 
               If temp16 > 0 And temp2 + temp16 > M + 1 Then 
                  NewNCount4 = 1 
                  NCount4 = NewNCount4 + NCount4 
               End If 
               If temp2 + temp16 <= NumberMissions + 1 Then 
                  NewRTime = temp27 
                  RTime = NewRTime + RTime 
                  NewASTime = temp38 
                  ASTime = NewASTime + ASTime 
               End If 
               If temp2 + temp16 > NumberMissions + 1 Then 
                  NewRTime2 = temp27 
                  RTime2 = NewRTime2 + RTime2 
                  NewASTime2 = temp38 
                  ASTime2 = NewASTime2 + ASTime2 
               End If 
            End If 
                                  
         Next j 
          
         Worksheets("Legacy Process").Cells(7 + i, 12) = NCount 
         Worksheets("Legacy Process").Cells(7 + i, 13) = NCount2 
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         Worksheets("Legacy Process").Cells(7 + i, 24) = NCount3 
         Worksheets("Legacy Process").Cells(7 + i, 25) = NCount4 
         Worksheets("Legacy Process").Cells(7 + i, 35) = RTime 
         Worksheets("Legacy Process").Cells(7 + i, 36) = RTime2 
         Worksheets("Legacy Process").Cells(7 + i, 46) = ASTime 
         Worksheets("Legacy Process").Cells(7 + i, 47) = ASTime2 
                  
      End If 
      Worksheets("Legacy Process").Cells(7 + i, 14) = 
Worksheets("Legacy Process").Cells(7 + i, 12) + Worksheets("Legacy 
Process").Cells(7 + i, 13) 
      Worksheets("Legacy Process").Cells(7 + i, 26) = 
Worksheets("Legacy Process").Cells(7 + i, 24) + Worksheets("Legacy 
Process").Cells(7 + i, 25) 
      Worksheets("Legacy Process").Cells(7 + i, 37) = 
Worksheets("Legacy Process").Cells(7 + i, 35) + Worksheets("Legacy 
Process").Cells(7 + i, 36) 
      Worksheets("Legacy Process").Cells(7 + i, 48) = 
Worksheets("Legacy Process").Cells(7 + i, 46) + Worksheets("Legacy 
Process").Cells(7 + i, 47) 
   Next i 
 
'This determines if there was an immediate Mission Abort 
Sheets("RVs").Select 
 
   For i = 1 To M 
      If Application.WorksheetFunction.CountIf(Range(Cells(4 + i, 6), 
Cells(4 + i, 12)), "= 1") >= 1 Then 
      Sheets("Legacy Process").Select 
      Worksheets("Legacy Process").Cells(7 + i, 16) = 1 
      Sheets("RVs").Select 
      Else 
      Worksheets("Legacy Process").Cells(7 + i, 16) = 0 
      End If 
   Next i 
       
'This produces the summed outputs for the Legacy Spreadsheet 
Sheets("Legacy Process").Select 
Worksheets("Legacy Process").Cells(1, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 12), Cells(7 + M, 
12))) 
Worksheets("Legacy Process").Cells(2, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 13), Cells(7 + M, 
13))) 
Worksheets("Legacy Process").Cells(3, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 14), Cells(7 + M, 
14))) 
Worksheets("Legacy Process").Cells(4, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 24), Cells(7 + M, 
24))) 
Worksheets("Legacy Process").Cells(5, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 25), Cells(7 + M, 
25))) 
Worksheets("Legacy Process").Cells(6, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 26), Cells(7 + M, 
26))) 
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Worksheets("Legacy Process").Cells(1, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 35), Cells(7 + M, 
35))) 
Worksheets("Legacy Process").Cells(2, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 36), Cells(7 + M, 
36))) 
Worksheets("Legacy Process").Cells(3, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 37), Cells(7 + M, 
37))) 
Worksheets("Legacy Process").Cells(4, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 46), Cells(7 + M, 
46))) 
Worksheets("Legacy Process").Cells(5, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 47), Cells(7 + M, 
47))) 
Worksheets("Legacy Process").Cells(6, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 48), Cells(7 + M, 
48))) 
 
 
'This clears Summed D, M, R, and AS Columns of CBM+ Process Worksheet 
Sheets("CBM+ Process").Select 
N = 3 
Worksheets("CBM+ Process").Range(Cells(8, 12), Cells(7 + M, 11 + 
N)).ClearContents 
Worksheets("CBM+ Process").Range(Cells(8, 24), Cells(7 + M, 23 + 
N)).ClearContents 
Worksheets("CBM+ Process").Range(Cells(8, 35), Cells(7 + M, 34 + 
N)).ClearContents 
Worksheets("CBM+ Process").Range(Cells(8, 46), Cells(7 + M, 45 + 
N)).ClearContents 
 
 
'This computes Sum of Dij and Sum of Rij for cases <= and > M 
Sheets("CBM+ Process").Select 
NCount = 0 
M = NumberMissions 
N = 7 
    
   For i = 1 To M 
      If Worksheets("CBM+ Process").Cells(7 + i, 4) > 0 Then 
         NewNCount = 0 
         NCount = 0 
         NewNCount2 = 0 
         NCount2 = 0 
         NewNCount3 = 0 
         NCount3 = 0 
         NewNCount4 = 0 
         NCount4 = 0 
         NewRTime = 0 
         RTime = 0 
         NewRTime2 = 0 
         RTime2 = 0 
         NewASTime = 0 
         ASTime = 0 
         ASTime2 = 0 
         NewASTime2 = 0 
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         temp2 = Worksheets("CBM+ Process").Cells(7 + i, 2) 
          
         For j = 1 To N 
            temp4 = Worksheets("CBM+ Process").Cells(7 + i, 4 + j) 
            temp16 = Worksheets("CBM+ Process").Cells(7 + i, 16 + j) 
            temp27 = Worksheets("CBM+ Process").Cells(7 + i, 27 + j) 
            temp38 = Worksheets("CBM+ Process").Cells(7 + i, 38 + j) 
          
            If temp4 < temp16 Then 
               If temp4 > 0 And temp2 + temp4 <= M + 1 Then 
                  NewNCount = 1 
                  NCount = NewNCount + NCount 
               End If 
               If temp4 > 0 And temp2 + temp4 > M + 1 Then 
                  NewNCount2 = 1 
                  NCount2 = NewNCount2 + NCount2 
               End If 
               If temp2 + temp4 <= NumberMissions + 1 Then 
                  NewRTime = temp27 
                  RTime = NewRTime + RTime 
                  NewASTime = temp38 
                  ASTime = NewASTime + ASTime 
               End If 
               If temp2 + temp4 > NumberMissions + 1 Then 
                  NewRTime2 = temp27 
                  RTime2 = NewRTime2 + RTime2 
                  NewASTime2 = temp38 
                  ASTime2 = NewASTime2 + ASTime2 
               End If 
            Else 
               If temp16 > 0 And temp2 + temp16 <= M + 1 Then 
                  NewNCount3 = 1 
                  NCount3 = NewNCount3 + NCount3 
               End If 
               If temp16 > 0 And temp2 + temp16 > M + 1 Then 
                  NewNCount4 = 1 
                  NCount4 = NewNCount4 + NCount4 
               End If 
               If temp2 + temp16 <= NumberMissions + 1 Then 
                  NewRTime = temp27 
                  RTime = NewRTime + RTime 
                  NewASTime = temp38 
                  ASTime = NewASTime + ASTime 
               End If 
               If temp2 + temp16 > NumberMissions + 1 Then 
                  NewRTime2 = temp27 
                  RTime2 = NewRTime2 + RTime2 
                  NewASTime2 = temp38 
                  ASTime2 = NewASTime2 + ASTime2 
               End If 
            End If 
             
         Next j 
         Worksheets("CBM+ Process").Cells(7 + i, 12) = NCount 
         Worksheets("CBM+ Process").Cells(7 + i, 13) = NCount2 
         Worksheets("CBM+ Process").Cells(7 + i, 24) = NCount3 
         Worksheets("CBM+ Process").Cells(7 + i, 25) = NCount4 
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         Worksheets("CBM+ Process").Cells(7 + i, 35) = RTime 
         Worksheets("CBM+ Process").Cells(7 + i, 36) = RTime2 
         Worksheets("CBM+ Process").Cells(7 + i, 46) = ASTime 
         Worksheets("CBM+ Process").Cells(7 + i, 47) = ASTime2 
          
      End If 
      Worksheets("CBM+ Process").Cells(7 + i, 14) = Worksheets("CBM+ 
Process").Cells(7 + i, 12) + Worksheets("CBM+ Process").Cells(7 + i, 
13) 
      Worksheets("CBM+ Process").Cells(7 + i, 26) = Worksheets("CBM+ 
Process").Cells(7 + i, 24) + Worksheets("CBM+ Process").Cells(7 + i, 
25) 
      Worksheets("CBM+ Process").Cells(7 + i, 37) = Worksheets("CBM+ 
Process").Cells(7 + i, 35) + Worksheets("CBM+ Process").Cells(7 + i, 
36) 
      Worksheets("CBM+ Process").Cells(7 + i, 48) = Worksheets("CBM+ 
Process").Cells(7 + i, 46) + Worksheets("CBM+ Process").Cells(7 + i, 
47) 
      Worksheets("CBM+ Process").Cells(7 + i, 52) = Worksheets("CBM+ 
Process").Cells(7 + i, 37) + Worksheets("CBM+ Process").Cells(7 + i, 
51) 
 
   Next i 
 
'This determines if there was an immediate Mission Abort 
Sheets("RVs").Select 
 
   For i = 1 To M 
      If Application.WorksheetFunction.CountIf(Range(Cells(4 + i, 6), 
Cells(4 + i, 12)), "= 1") >= 1 Then 
      Sheets("CBM+ Process").Select 
      Worksheets("CBM+ Process").Cells(7 + i, 16) = 1 
      Sheets("RVs").Select 
      Else 
      Worksheets("CBM+ Process").Cells(7 + i, 16) = 0 
      End If 
   Next i 
       
'This produces the summed outputs for the CBM+ Spreadsheet 
Sheets("CBM+ Process").Select 
 
Worksheets("CBM+ Process").Cells(1, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 12), Cells(7 + M, 
12))) 
Worksheets("CBM+ Process").Cells(2, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 13), Cells(7 + M, 
13))) 
Worksheets("CBM+ Process").Cells(3, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 14), Cells(7 + M, 
14))) 
Worksheets("CBM+ Process").Cells(4, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 24), Cells(7 + M, 
24))) 
Worksheets("CBM+ Process").Cells(5, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 25), Cells(7 + M, 
25))) 
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Worksheets("CBM+ Process").Cells(6, 15) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 26), Cells(7 + M, 
26))) 
Worksheets("CBM+ Process").Cells(1, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 35), Cells(7 + M, 
35))) 
Worksheets("CBM+ Process").Cells(2, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 36), Cells(7 + M, 
36))) 
Worksheets("CBM+ Process").Cells(3, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 37), Cells(7 + M, 
37))) 
Worksheets("CBM+ Process").Cells(4, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 46), Cells(7 + M, 
46))) 
Worksheets("CBM+ Process").Cells(5, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 47), Cells(7 + M, 
47))) 
Worksheets("CBM+ Process").Cells(6, 18) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 48), Cells(7 + M, 
48))) 
Worksheets("CBM+ Process").Cells(1, 21) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 50), Cells(7 + M, 
50))) 
Worksheets("CBM+ Process").Cells(2, 21) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 51), Cells(7 + M, 
51))) 
Worksheets("CBM+ Process").Cells(3, 21) = 
Application.WorksheetFunction.Sum(Range(Cells(8, 52), Cells(7 + M, 
52))) 
 
'This transposes data onto Data Worksheet 
Sheets("Legacy Process").Select 
Range(Cells(1, 15), Cells(6, 15)).Select 
Selection.Copy 
Sheets("Data").Select 
Range(Cells(24 + v, 1), Cells(24 + v, 6)).Select 
Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, 
SkipBlanks:= _ 
        False, Transpose:=True 
 
Sheets("Legacy Process").Select 
Range(Cells(1, 18), Cells(6, 18)).Select 
Selection.Copy 
Sheets("Data").Select 
Range(Cells(24 + v, 7), Cells(24 + v, 12)).Select 
Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, 
SkipBlanks:= _ 
        False, Transpose:=True 
 
'This transposes data onto Data Worksheet 
Sheets("CBM+ Process").Select 
Range(Cells(1, 15), Cells(6, 15)).Select 
Selection.Copy 
Sheets("Data").Select 
Range(Cells(24 + v, 22), Cells(24 + v, 27)).Select 
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Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, 
SkipBlanks:= _ 
        False, Transpose:=True 
 
Sheets("CBM+ Process").Select 
Range(Cells(1, 18), Cells(6, 18)).Select 
Selection.Copy 
Sheets("Data").Select 
Range(Cells(24 + v, 28), Cells(24 + v, 33)).Select 
Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, 
SkipBlanks:= _ 
        False, Transpose:=True 
 
Sheets("CBM+ Process").Select 
Range(Cells(1, 21), Cells(3, 21)).Select 
Selection.Copy 
Sheets("Data").Select 
Range(Cells(24 + v, 34), Cells(24 + v, 36)).Select 
Selection.PasteSpecial Paste:=xlPasteAll, Operation:=xlNone, 
SkipBlanks:= _ 
        False, Transpose:=True 
 
Next v 
 
'This determines means and CIs 
Sheets("Data").Select 
Worksheets("Data").Cells(2, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 1), Cells(24 + v, 
1))) 
Worksheets("Data").Cells(3, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 2), Cells(24 + v, 
2))) 
Worksheets("Data").Cells(4, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 3), Cells(24 + v, 
3))) 
Worksheets("Data").Cells(5, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 4), Cells(24 + v, 
4))) 
Worksheets("Data").Cells(6, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 5), Cells(24 + v, 
5))) 
Worksheets("Data").Cells(7, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 6), Cells(24 + v, 
6))) 
Worksheets("Data").Cells(8, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 7), Cells(24 + v, 
7))) 
Worksheets("Data").Cells(9, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 8), Cells(24 + v, 
8))) 
Worksheets("Data").Cells(10, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 9), Cells(24 + v, 
9))) 
Worksheets("Data").Cells(11, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 10), Cells(24 + 
v, 10))) 
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Worksheets("Data").Cells(12, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 11), Cells(24 + 
v, 11))) 
Worksheets("Data").Cells(13, 3) = 
Application.WorksheetFunction.Average(Range(Cells(25, 12), Cells(24 + 
v, 12))) 
 
Worksheets("Data").Cells(2, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 22), Cells(24 + 
v, 22))) 
Worksheets("Data").Cells(3, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 23), Cells(24 + 
v, 23))) 
Worksheets("Data").Cells(4, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 24), Cells(24 + 
v, 24))) 
Worksheets("Data").Cells(5, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 25), Cells(24 + 
v, 25))) 
Worksheets("Data").Cells(6, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 26), Cells(24 + 
v, 26))) 
Worksheets("Data").Cells(7, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 27), Cells(24 + 
v, 27))) 
Worksheets("Data").Cells(8, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 28), Cells(24 + 
v, 28))) 
Worksheets("Data").Cells(9, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 29), Cells(24 + 
v, 29))) 
Worksheets("Data").Cells(10, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 30), Cells(24 + 
v, 30))) 
Worksheets("Data").Cells(11, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 31), Cells(24 + 
v, 31))) 
Worksheets("Data").Cells(12, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 32), Cells(24 + 
v, 32))) 
Worksheets("Data").Cells(13, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 33), Cells(24 + 
v, 33))) 
Worksheets("Data").Cells(14, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 34), Cells(24 + 
v, 34))) 
Worksheets("Data").Cells(15, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 35), Cells(24 + 
v, 35))) 
Worksheets("Data").Cells(16, 11) = 
Application.WorksheetFunction.Average(Range(Cells(25, 36), Cells(24 + 
v, 36))) 
 
 
If Worksheets("Data").Cells(2, 3) > 0 Then 
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   Worksheets("Data").Cells(2, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 1), Cells(24 + v, 
1))) 
      Else: Worksheets("Data").Cells(2, 5) = 0 
End If 
 
If Worksheets("Data").Cells(3, 3) > 0 Then 
   Worksheets("Data").Cells(3, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 2), Cells(24 + v, 
2))) 
      Else: Worksheets("Data").Cells(3, 5) = 0 
End If 
 
If Worksheets("Data").Cells(4, 3) > 0 Then 
   Worksheets("Data").Cells(4, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 3), Cells(24 + v, 
3))) 
      Else: Worksheets("Data").Cells(4, 5) = 0 
End If 
 
If Worksheets("Data").Cells(5, 3) > 0 Then 
   Worksheets("Data").Cells(5, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 4), Cells(24 + v, 
4))) 
      Else: Worksheets("Data").Cells(5, 5) = 0 
End If 
 
If Worksheets("Data").Cells(6, 3) > 0 Then 
   Worksheets("Data").Cells(6, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 5), Cells(24 + v, 
5))) 
      Else: Worksheets("Data").Cells(6, 5) = 0 
End If 
 
If Worksheets("Data").Cells(7, 3) > 0 Then 
   Worksheets("Data").Cells(7, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 6), Cells(24 + v, 
6))) 
      Else: Worksheets("Data").Cells(7, 5) = 0 
End If 
 
If Worksheets("Data").Cells(8, 3) > 0 Then 
   Worksheets("Data").Cells(8, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 7), Cells(24 + v, 
7))) 
      Else: Worksheets("Data").Cells(8, 5) = 0 
End If 
 
If Worksheets("Data").Cells(9, 3) > 0 Then 
   Worksheets("Data").Cells(9, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 8), Cells(24 + v, 
8))) 
      Else: Worksheets("Data").Cells(9, 5) = 0 
End If 
 
If Worksheets("Data").Cells(10, 3) > 0 Then 
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   Worksheets("Data").Cells(10, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 9), Cells(24 + v, 
9))) 
      Else: Worksheets("Data").Cells(10, 5) = 0 
End If 
 
If Worksheets("Data").Cells(11, 3) > 0 Then 
   Worksheets("Data").Cells(11, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 10), Cells(24 + v, 
10))) 
      Else: Worksheets("Data").Cells(11, 5) = 0 
End If 
 
If Worksheets("Data").Cells(12, 3) > 0 Then 
   Worksheets("Data").Cells(12, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 11), Cells(24 + v, 
11))) 
      Else: Worksheets("Data").Cells(12, 5) = 0 
End If 
 
If Worksheets("Data").Cells(13, 3) > 0 Then 
   Worksheets("Data").Cells(13, 5) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 12), Cells(24 + v, 
12))) 
      Else: Worksheets("Data").Cells(13, 5) = 0 
End If 
 
 
If Worksheets("Data").Cells(2, 11) > 0 Then 
   Worksheets("Data").Cells(2, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 22), Cells(24 + v, 
22))) 
      Else: Worksheets("Data").Cells(2, 13) = 0 
End If 
 
If Worksheets("Data").Cells(3, 11) > 0 Then 
   Worksheets("Data").Cells(3, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 23), Cells(24 + v, 
23))) 
      Else: Worksheets("Data").Cells(3, 13) = 0 
End If 
 
If Worksheets("Data").Cells(4, 11) > 0 Then 
   Worksheets("Data").Cells(4, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 24), Cells(24 + v, 
24))) 
      Else: Worksheets("Data").Cells(4, 13) = 0 
End If 
 
If Worksheets("Data").Cells(5, 11) > 0 Then 
   Worksheets("Data").Cells(5, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 25), Cells(24 + v, 
25))) 
      Else: Worksheets("Data").Cells(5, 13) = 0 
End If 
 
If Worksheets("Data").Cells(6, 11) > 0 Then 
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   Worksheets("Data").Cells(6, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 26), Cells(24 + v, 
26))) 
      Else: Worksheets("Data").Cells(6, 13) = 0 
End If 
 
If Worksheets("Data").Cells(7, 11) > 0 Then 
   Worksheets("Data").Cells(7, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 27), Cells(24 + v, 
27))) 
      Else: Worksheets("Data").Cells(7, 13) = 0 
End If 
 
If Worksheets("Data").Cells(8, 11) > 0 Then 
   Worksheets("Data").Cells(8, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 28), Cells(24 + v, 
28))) 
      Else: Worksheets("Data").Cells(8, 13) = 0 
End If 
 
If Worksheets("Data").Cells(9, 11) > 0 Then 
   Worksheets("Data").Cells(9, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 29), Cells(24 + v, 
29))) 
      Else: Worksheets("Data").Cells(9, 13) = 0 
End If 
 
If Worksheets("Data").Cells(10, 11) > 0 Then 
   Worksheets("Data").Cells(10, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 30), Cells(24 + v, 
30))) 
      Else: Worksheets("Data").Cells(10, 13) = 0 
End If 
 
If Worksheets("Data").Cells(11, 11) > 0 Then 
   Worksheets("Data").Cells(11, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 31), Cells(24 + v, 
31))) 
      Else: Worksheets("Data").Cells(11, 13) = 0 
End If 
 
If Worksheets("Data").Cells(12, 11) > 0 Then 
   Worksheets("Data").Cells(12, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 32), Cells(24 + v, 
32))) 
      Else: Worksheets("Data").Cells(12, 13) = 0 
End If 
 
If Worksheets("Data").Cells(13, 11) > 0 Then 
   Worksheets("Data").Cells(13, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 33), Cells(24 + v, 
33))) 
      Else: Worksheets("Data").Cells(13, 13) = 0 
End If 
 
If Worksheets("Data").Cells(14, 11) > 0 Then 
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   Worksheets("Data").Cells(14, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 34), Cells(24 + v, 
34))) 
      Else: Worksheets("Data").Cells(14, 13) = 0 
End If 
 
If Worksheets("Data").Cells(15, 11) > 0 Then 
   Worksheets("Data").Cells(15, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 35), Cells(24 + v, 
35))) 
      Else: Worksheets("Data").Cells(15, 13) = 0 
End If 
 
If Worksheets("Data").Cells(16, 11) > 0 Then 
   Worksheets("Data").Cells(16, 13) = 
Application.WorksheetFunction.StDev(Range(Cells(25, 36), Cells(24 + v, 
36))) 
      Else: Worksheets("Data").Cells(16, 13) = 0 
End If 
 
If Worksheets("Data").Cells(2, 5) > 0 Then 
   Worksheets("Data").Cells(2, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(2, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(2, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(2, 8) = Worksheets("Data").Cells(2, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(2, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(2, 7) = 0 
         Worksheets("Data").Cells(2, 8) = 0 
End If 
 
If Worksheets("Data").Cells(3, 5) > 0 Then 
   Worksheets("Data").Cells(3, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(3, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(3, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(3, 8) = Worksheets("Data").Cells(3, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(3, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(3, 7) = 0 
         Worksheets("Data").Cells(3, 8) = 0 
End If 
 
If Worksheets("Data").Cells(4, 5) > 0 Then 
   Worksheets("Data").Cells(4, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(4, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(4, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(4, 8) = Worksheets("Data").Cells(4, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(4, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(4, 7) = 0 
         Worksheets("Data").Cells(4, 8) = 0 
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End If 
 
If Worksheets("Data").Cells(5, 5) > 0 Then 
   Worksheets("Data").Cells(5, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(5, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(5, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(5, 8) = Worksheets("Data").Cells(5, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(5, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(5, 7) = 0 
         Worksheets("Data").Cells(5, 8) = 0 
End If 
 
If Worksheets("Data").Cells(6, 5) > 0 Then 
   Worksheets("Data").Cells(6, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(6, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(6, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(6, 8) = Worksheets("Data").Cells(6, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(6, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(6, 7) = 0 
         Worksheets("Data").Cells(6, 8) = 0 
End If 
 
If Worksheets("Data").Cells(7, 5) > 0 Then 
   Worksheets("Data").Cells(7, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(7, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(7, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(7, 8) = Worksheets("Data").Cells(7, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(7, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(7, 7) = 0 
         Worksheets("Data").Cells(7, 8) = 0 
End If 
 
If Worksheets("Data").Cells(8, 5) > 0 Then 
   Worksheets("Data").Cells(8, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(8, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(8, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(8, 8) = Worksheets("Data").Cells(8, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(8, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(8, 7) = 0 
         Worksheets("Data").Cells(8, 8) = 0 
End If 
 
If Worksheets("Data").Cells(9, 5) > 0 Then 
   Worksheets("Data").Cells(9, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(9, 3) - 
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Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(9, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(9, 8) = Worksheets("Data").Cells(9, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(9, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(9, 7) = 0 
         Worksheets("Data").Cells(9, 8) = 0 
End If 
 
If Worksheets("Data").Cells(10, 5) > 0 Then 
   Worksheets("Data").Cells(10, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(10, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(10, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(10, 8) = Worksheets("Data").Cells(10, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(10, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(10, 7) = 0 
         Worksheets("Data").Cells(10, 8) = 0 
End If 
 
If Worksheets("Data").Cells(11, 5) > 0 Then 
   Worksheets("Data").Cells(11, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(11, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(11, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(11, 8) = Worksheets("Data").Cells(11, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(11, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(11, 7) = 0 
         Worksheets("Data").Cells(11, 8) = 0 
End If 
 
If Worksheets("Data").Cells(12, 5) > 0 Then 
   Worksheets("Data").Cells(12, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(12, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(12, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(12, 8) = Worksheets("Data").Cells(12, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(12, 5), v - 1) 
      Else 
         Worksheets("Data").Cells(12, 7) = 0 
         Worksheets("Data").Cells(12, 8) = 0 
End If 
 
If Worksheets("Data").Cells(13, 5) > 0 Then 
   Worksheets("Data").Cells(13, 7) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(13, 3) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(13, 5), (v - 1)), 0) 
   Worksheets("Data").Cells(13, 8) = Worksheets("Data").Cells(13, 3) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(13, 5), v - 1) 
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      Else 
         Worksheets("Data").Cells(13, 7) = 0 
         Worksheets("Data").Cells(13, 8) = 0 
End If 
 
If Worksheets("Data").Cells(2, 13) > 0 Then 
   Worksheets("Data").Cells(2, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(2, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(2, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(2, 16) = Worksheets("Data").Cells(2, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(2, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(2, 15) = 0 
         Worksheets("Data").Cells(2, 16) = 0 
End If 
 
If Worksheets("Data").Cells(3, 13) > 0 Then 
   Worksheets("Data").Cells(3, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(3, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(3, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(3, 16) = Worksheets("Data").Cells(3, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(3, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(3, 15) = 0 
         Worksheets("Data").Cells(3, 16) = 0 
End If 
 
If Worksheets("Data").Cells(4, 13) > 0 Then 
   Worksheets("Data").Cells(4, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(4, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(4, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(4, 16) = Worksheets("Data").Cells(4, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(4, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(4, 15) = 0 
         Worksheets("Data").Cells(4, 16) = 0 
End If 
 
If Worksheets("Data").Cells(5, 13) > 0 Then 
   Worksheets("Data").Cells(5, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(5, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(5, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(5, 16) = Worksheets("Data").Cells(5, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(5, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(5, 15) = 0 
         Worksheets("Data").Cells(5, 16) = 0 
End If 
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If Worksheets("Data").Cells(6, 13) > 0 Then 
   Worksheets("Data").Cells(6, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(6, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(6, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(6, 16) = Worksheets("Data").Cells(6, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(6, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(6, 15) = 0 
         Worksheets("Data").Cells(6, 16) = 0 
End If 
 
If Worksheets("Data").Cells(7, 13) > 0 Then 
   Worksheets("Data").Cells(7, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(7, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(7, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(7, 16) = Worksheets("Data").Cells(7, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(7, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(7, 15) = 0 
         Worksheets("Data").Cells(7, 16) = 0 
End If 
 
If Worksheets("Data").Cells(8, 13) > 0 Then 
   Worksheets("Data").Cells(8, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(8, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(8, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(8, 16) = Worksheets("Data").Cells(8, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(8, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(8, 15) = 0 
         Worksheets("Data").Cells(8, 16) = 0 
End If 
 
If Worksheets("Data").Cells(9, 13) > 0 Then 
   Worksheets("Data").Cells(9, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(9, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(9, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(9, 16) = Worksheets("Data").Cells(9, 11) + 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(9, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(9, 15) = 0 
         Worksheets("Data").Cells(9, 16) = 0 
End If 
 
If Worksheets("Data").Cells(10, 13) > 0 Then 
   Worksheets("Data").Cells(10, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(10, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(10, 13), (v - 1)), 0) 
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   Worksheets("Data").Cells(10, 16) = Worksheets("Data").Cells(10, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(10, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(10, 15) = 0 
         Worksheets("Data").Cells(10, 16) = 0 
End If 
 
If Worksheets("Data").Cells(11, 13) > 0 Then 
   Worksheets("Data").Cells(11, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(11, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(11, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(11, 16) = Worksheets("Data").Cells(11, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(11, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(11, 15) = 0 
         Worksheets("Data").Cells(11, 16) = 0 
End If 
 
If Worksheets("Data").Cells(12, 13) > 0 Then 
   Worksheets("Data").Cells(12, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(12, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(12, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(12, 16) = Worksheets("Data").Cells(12, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(12, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(12, 15) = 0 
         Worksheets("Data").Cells(12, 16) = 0 
End If 
 
If Worksheets("Data").Cells(13, 13) > 0 Then 
   Worksheets("Data").Cells(13, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(13, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(13, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(13, 16) = Worksheets("Data").Cells(13, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(13, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(13, 15) = 0 
         Worksheets("Data").Cells(13, 16) = 0 
End If 
 
If Worksheets("Data").Cells(14, 13) > 0 Then 
   Worksheets("Data").Cells(14, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(14, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(14, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(14, 16) = Worksheets("Data").Cells(14, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(14, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(14, 15) = 0 
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         Worksheets("Data").Cells(14, 16) = 0 
End If 
 
If Worksheets("Data").Cells(15, 13) > 0 Then 
   Worksheets("Data").Cells(15, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(15, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(15, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(15, 16) = Worksheets("Data").Cells(15, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(15, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(15, 15) = 0 
         Worksheets("Data").Cells(15, 16) = 0 
End If 
 
If Worksheets("Data").Cells(16, 13) > 0 Then 
   Worksheets("Data").Cells(16, 15) = 
Application.WorksheetFunction.Max(Worksheets("Data").Cells(16, 11) - 
Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(16, 13), (v - 1)), 0) 
   Worksheets("Data").Cells(16, 16) = Worksheets("Data").Cells(16, 11) 
+ Application.WorksheetFunction.Confidence(0.05, 
Worksheets("Data").Cells(16, 13), v - 1) 
      Else 
         Worksheets("Data").Cells(16, 15) = 0 
         Worksheets("Data").Cells(16, 16) = 0 
 
End Sub 
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APPENDIX E.  STATISTICAL RESULTS FOR VARYING PC 

All table listed below were computed using 1,000 replications of the simulation. 

Table A1 displays statistical summaries of the output from simulation of the number of 

mission aborts occurring as a result of 1,250 missions (5,000 flight hours) while varying 

PC.  The parameters of the beta distribution are as per Table 11; the parameters of the 

Weibull distribution are αW=1.5 and βW=11.08.  This is data for Figure 6. 

Table A1 

PC

0.10 ∑Aborts Mean: 4.70 SD: 2.14 95% CI: 4.57 4.83 ∑Aborts Mean: 5.25 SD: 2.27 95% CI: 5.11 5.39
0.20 ∑Aborts Mean: 4.53 SD: 2.11 95% CI: 4.40 4.66 ∑Aborts Mean: 2.95 SD: 1.64 95% CI: 2.85 3.06
0.30 ∑Aborts Mean: 4.57 SD: 2.07 95% CI: 4.44 4.70 ∑Aborts Mean: 1.91 SD: 1.40 95% CI: 1.83 2.00
0.40 ∑Aborts Mean: 4.49 SD: 2.09 95% CI: 4.36 4.62 ∑Aborts Mean: 1.32 SD: 1.11 95% CI: 1.25 1.39
0.50 ∑Aborts Mean: 4.45 SD: 2.15 95% CI: 4.32 4.58 ∑Aborts Mean: 0.93 SD: 0.97 95% CI: 0.87 0.99
0.60 ∑Aborts Mean: 4.55 SD: 2.13 95% CI: 4.42 4.68 ∑Aborts Mean: 0.73 SD: 0.87 95% CI: 0.67 0.78
0.70 ∑Aborts Mean: 4.56 SD: 2.06 95% CI: 4.44 4.69 ∑Aborts Mean: 0.53 SD: 0.74 95% CI: 0.48 0.57
0.80 ∑Aborts Mean: 4.52 SD: 2.08 95% CI: 4.39 4.65 ∑Aborts Mean: 0.46 SD: 0.68 95% CI: 0.42 0.50
0.90 ∑Aborts Mean: 4.51 SD: 2.08 95% CI: 4.38 4.64 ∑Aborts Mean: 0.36 SD: 0.61 95% CI: 0.32 0.40
0.99 ∑Aborts Mean: 4.53 SD: 2.14 95% CI: 4.40 4.66 ∑Aborts Mean: 0.32 SD: 0.58 95% CI: 0.28 0.35

LEGACY PROCESS CBM+ PROCESS

 

Table A2 displays the statistical summaries of the output from simulation of the repair 

times occurring as a result of 1,250 missions (5,000 flight hours) while varying PC.  The 

parameters of the beta distribution are as per Table 11; the parameters of the Weibull 

distribution are αW=1.5 and βW=11.08.  This is data for Figure 7. 

Table A2 

PC

0.10 ∑R Mean: 76.13 SD: 27.36 95% CI: 74.44 77.83 ∑R Mean: 80.75 SD: 29.17 95% CI: 78.94 82.55
0.20 ∑R Mean: 75.06 SD: 26.71 95% CI: 73.40 76.71 ∑R Mean: 66.58 SD: 23.92 95% CI: 65.10 68.07
0.30 ∑R Mean: 75.94 SD: 27.24 95% CI: 74.25 77.63 ∑R Mean: 59.27 SD: 23.04 95% CI: 57.84 60.70
0.40 ∑R Mean: 74.65 SD: 27.13 95% CI: 72.97 76.33 ∑R Mean: 54.83 SD: 20.85 95% CI: 53.54 56.13
0.50 ∑R Mean: 75.29 SD: 26.56 95% CI: 73.65 76.94 ∑R Mean: 51.40 SD: 19.09 95% CI: 50.22 52.58
0.60 ∑R Mean: 75.02 SD: 27.49 95% CI: 73.32 76.73 ∑R Mean: 46.68 SD: 18.23 95% CI: 45.55 47.81
0.70 ∑R Mean: 76.24 SD: 26.60 95% CI: 74.59 77.89 ∑R Mean: 44.07 SD: 17.29 95% CI: 42.99 45.14
0.80 ∑R Mean: 75.84 SD: 28.04 95% CI: 74.10 77.58 ∑R Mean: 40.75 SD: 16.05 95% CI: 39.75 41.74
0.90 ∑R Mean: 74.73 SD: 27.10 95% CI: 73.05 76.41 ∑R Mean: 37.64 SD: 15.80 95% CI: 36.66 38.62
0.99 ∑R Mean: 75.38 SD: 27.58 95% CI: 73.67 77.09 ∑R Mean: 34.83 SD: 14.53 95% CI: 33.93 35.73

LEGACY PROCESS CBM+ PROCESS

 

Table A3 displays the statistical summaries of the simulation output for the number of 

diagnostic symptoms recognized, number of mission aborts, repair time as a result of 

1,250 missions (5,000 flight hours) while varying the variance of the Weibull distribution 

determining MA for the case with mean PC=0.99.  The beta distribution has parameters 

αB=25 and βB=.25.  The parameters of the Weibull distribution when αW=0.5 then βW=5, 
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when αW=1 then βW=10, and when αW=1.5 then βW=11.08.  This is data for Figures 8, 9, 

and 10. 

Table A3 

α
0.50 ∑DSs Mean: 4.08 SD: 1.98 95% CI: 3.96 4.20 ∑DSs Mean: 7.26 SD: 2.64 95% CI: 7.10 7.42
0.50 ∑Aborts Mean: 7.35 SD: 2.76 95% CI: 7.18 7.52 ∑Aborts Mean: 4.17 SD: 2.07 95% CI: 4.04 4.30
0.50 ∑R Mean: 70.13 SD: 26.62 95% CI: 68.48 71.78 ∑R Mean: 42.64 SD: 18.51 95% CI: 41.49 43.79
1.00 ∑DSs Mean: 6.08 SD: 2.48 95% CI: 5.92 6.23 ∑DSs Mean: 10.40 SD: 3.28 95% CI: 10.19 10.60
1.00 ∑Aborts Mean: 5.44 SD: 2.25 95% CI: 5.30 5.58 ∑Aborts Mean: 1.12 SD: 1.03 95% CI: 1.05 1.18
1.00 ∑R Mean: 75.86 SD: 27.82 95% CI: 74.14 77.59 ∑R Mean: 36.54 SD: 16.35 95% CI: 35.53 37.56
1.50 ∑DSs Mean: 6.79 SD: 2.66 95% CI: 6.62 6.95 ∑DSs Mean: 11.03 SD: 3.36 95% CI: 10.82 11.24
1.50 ∑Aborts Mean: 4.52 SD: 2.12 95% CI: 4.39 4.65 ∑Aborts Mean: 0.28 SD: 0.51 95% CI: 0.24 0.31
1.50 ∑R Mean: 74.81 SD: 27.39 95% CI: 73.11 76.50 ∑R Mean: 34.78 SD: 14.80 95% CI: 33.87 35.70

LEGACY PROCESS CBM+ PROCESS

 

Tables A4 and A5 display the statistical summaries for the simulation output of the 

number of diagnostic symptoms recognized, number of mission aborts, repair time as a 

result of 1,250 missions (5,000 flight hours) while varying the variance of the Weibull 

distribution having mean 10 determining MA for the cases where mean PC=0.50 and mean 

PC=0.20; the parameters of the beta distribution are αB=25 βB=25 (when PC=0.50) and 

αB=25 βB=100 (when PC=0.20).  This is data for Figures 8, 9, and 10. 

Table A4 (PC=0.50) 

α
0.5 ∑DSs Mean: 4.19 SD: 2.02 95% CI: 4.06 4.31 ∑DSs Mean: 6.39 SD: 2.54 95% CI: 6.23 6.55
0.5 ∑Aborts Mean: 7.32 SD: 2.70 95% CI: 7.15 7.49 ∑Aborts Mean: 5.12 SD: 2.28 95% CI: 4.97 5.26
0.5 ∑R Mean: 70.71 SD: 26.44 95% CI: 69.07 72.34 ∑R Mean: 53.00 SD: 21.19 95% CI: 51.69 54.31
1 ∑DSs Mean: 5.99 SD: 2.44 95% CI: 5.83 6.14 ∑DSs Mean: 9.30 SD: 3.12 95% CI: 9.11 9.49
1 ∑Aborts Mean: 5.28 SD: 2.34 95% CI: 5.13 5.42 ∑Aborts Mean: 1.96 SD: 1.45 95% CI: 1.87 2.05
1 ∑R Mean: 74.59 SD: 28.77 95% CI: 72.80 76.37 ∑R Mean: 51.20 SD: 20.26 95% CI: 49.94 52.45

1.5 ∑DSs Mean: 6.72 SD: 2.50 95% CI: 6.57 6.87 ∑DSs Mean: 10.35 SD: 3.10 95% CI: 10.16 10.54
1.5 ∑Aborts Mean: 4.62 SD: 2.10 95% CI: 4.49 4.75 ∑Aborts Mean: 1.00 SD: 0.98 95% CI: 0.93 1.06
1.5 ∑R Mean: 75.54 SD: 26.39 95% CI: 73.91 77.18 ∑R Mean: 50.22 SD: 18.71 95% CI: 49.06 51.38

LEGACY PROCESS CBM+ PROCESS

 

Table A5 (PC=0.20) 

α
0.5 ∑DSs Mean: 4.06 SD: 1.98 95% CI: 3.94 4.18 ∑DSs Mean: 4.88 SD: 2.27 95% CI: 4.74 5.02
0.5 ∑Aborts Mean: 7.26 SD: 2.62 95% CI: 7.09 7.42 ∑Aborts Mean: 6.44 SD: 2.45 95% CI: 6.29 6.59
0.5 ∑R Mean: 70.19 SD: 26.71 95% CI: 68.54 71.85 ∑R Mean: 63.61 SD: 24.94 95% CI: 62.06 65.15
1 ∑DSs Mean: 6.10 SD: 2.47 95% CI: 5.95 6.25 ∑DSs Mean: 7.56 SD: 2.72 95% CI: 7.39 7.72
1 ∑Aborts Mean: 5.40 SD: 2.39 95% CI: 5.25 5.54 ∑Aborts Mean: 3.94 SD: 2.09 95% CI: 3.81 4.07
1 ∑R Mean: 75.93 SD: 28.37 95% CI: 74.17 77.68 ∑R Mean: 68.00 SD: 25.51 95% CI: 66.42 69.58

1.5 ∑DSs Mean: 7.04 SD: 2.59 95% CI: 6.88 7.20 ∑DSs Mean: 8.67 SD: 2.95 95% CI: 8.49 8.85
1.5 ∑Aborts Mean: 4.54 SD: 2.19 95% CI: 4.41 4.68 ∑Aborts Mean: 2.91 SD: 1.72 95% CI: 2.80 3.01
1.5 ∑R Mean: 75.81 SD: 27.79 95% CI: 74.08 77.53 ∑R Mean: 68.02 SD: 25.21 95% CI: 66.45 69.58

LEGACY PROCESS CBM+ PROCESS

 

Table A6 displays the statistical summaries of simulation output for the  number of false 

positives and the repair (inspection) times as a result of 1,250 missions (5,000 flight 

hours) while varying the false positive arrival rate; the parameters of the beta distribution 

are αB=25 and βB=.25; the parameters of the Weibull distribution are αW=1.5 and 

βW=11.08.  This is an expanded version of Table 12. 
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Table A6 

                                       

False 
Positive 

Rate
0.9999 ∑FP Mean: 1238.57 SD: 3.31 95% CI: 1238.36 1238.78
0.90 ∑FP Mean: 1115.29 SD: 11.18 95% CI: 1114.59 1115.98
0.80 ∑FP Mean: 990.51 SD: 14.47 95% CI: 989.61 991.41
0.70 ∑FP Mean: 866.70 SD: 16.58 95% CI: 865.67 867.73
0.60 ∑FP Mean: 743.41 SD: 17.13 95% CI: 742.34 744.47
0.50 ∑FP Mean: 620.23 SD: 17.69 95% CI: 619.14 621.33
0.40 ∑FP Mean: 495.29 SD: 16.85 95% CI: 494.25 496.34
0.30 ∑FP Mean: 372.07 SD: 16.24 95% CI: 371.06 373.08
0.20 ∑FP Mean: 247.05 SD: 14.09 95% CI: 246.18 247.92
0.10 ∑FP Mean: 124.34 SD: 10.44 95% CI: 123.69 124.98

0.0001 ∑FP Mean: 0.14 SD: 0.36 95% CI: 0.11 0.16
False 

Positive 
Rate

0.9999 ∑FP Time Mean: 3717.41 SD: 105.16 95% CI: 3710.89 3723.93
0.90 ∑FP Time Mean: 3343.55 SD: 106.54 95% CI: 3336.95 3350.15
0.80 ∑FP Time Mean: 2969.66 SD: 104.41 95% CI: 2963.19 2976.13
0.70 ∑FP Time Mean: 2598.47 SD: 104.49 95% CI: 2591.99 2604.94
0.60 ∑FP Time Mean: 2228.17 SD: 98.01 95% CI: 2222.10 2234.25
0.50 ∑FP Time Mean: 1861.03 SD: 89.15 95% CI: 1855.50 1866.55
0.40 ∑FP Time Mean: 1490.28 SD: 85.40 95% CI: 1484.98 1495.57
0.30 ∑FP Time Mean: 1118.76 SD: 74.55 95% CI: 1114.14 1123.38
0.20 ∑FP Time Mean: 741.94 SD: 62.68 95% CI: 738.05 745.82
0.10 ∑FP Time Mean: 371.62 SD: 47.00 95% CI: 368.71 374.54

0.0001 ∑FP Time Mean: 0.42 SD: 1.64 95% CI: 0.32 0.52

CBM+ PROCESS (NUMBER OF FALSE POSITIVE ARRIVALS)

CBM+ PROCESS (REPAIR TIME INCURRED DUE TO FALSE POSITIVE ARRIVALS)

 

Table A7 displays the statistical summaries of the output of simulations for the total 

repair time (total repair time = diagnostic symptom repair time + false positive repair 

time) as a result of 1,250 missions (5,000 flight hours) while varying the false positive 

arrival rate.  The parameters of the beta distribution are αB=25 and βB=.25; the parameters 

of the Weibull distribution are αW=1.5 and βW=11.08.    This is an expanded version of 

Table 14. 

Table A7 



88 

                            

False 
Positive 

Rate
0.10 ∑R+∑FP Time Mean: 406.13 SD: 48.87 95% CI: 403.11 409.16
0.09 ∑R+∑FP Time Mean: 369.59 SD: 46.37 95% CI: 366.71 372.46
0.08 ∑R+∑FP Time Mean: 330.84 SD: 42.89 95% CI: 328.18 333.50
0.07 ∑R+∑FP Time Mean: 291.50 SD: 42.19 95% CI: 288.89 294.12
0.06 ∑R+∑FP Time Mean: 257.54 SD: 38.12 95% CI: 255.18 259.91
0.05 ∑R+∑FP Time Mean: 221.93 SD: 37.29 95% CI: 219.61 224.24
0.04 ∑R+∑FP Time Mean: 185.08 SD: 32.49 95% CI: 183.06 187.09
0.03 ∑R+∑FP Time Mean: 146.10 SD: 30.02 95% CI: 144.24 147.96
0.02 ∑R+∑FP Time Mean: 108.97 SD: 25.81 95% CI: 107.38 110.57
0.01 ∑R+∑FP Time Mean: 71.91 SD: 20.47 95% CI: 70.64 73.17

0.0001 ∑R+∑FP Time Mean: 36.06 SD: 15.43 95% CI: 35.10 37.02

CBM+ PROCESS (TOTAL REPAIR TIME=DS REPAIR TIME+FALSE POSITIVE REPAIR TIME)

 

Table A8 displays the statistical summaries of simulation output for the time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when mean PC is 0.99 and the mean time until the replacement component arrives is 

3 days.  The parameters of the beta distribution are αB=25 and βB=.25; the parameters of 

the Weibull distribution are αW=1.5 and βW=11.08.  The time until a component 

replacement arrives has an exponential distribution.   This is data for Figure 12. 

Table A8 

PON HAND
0.9999 ∑AS Mean: 0.00 SD: 0.09 95% CI: 0.00 0.01 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 1.72 SD: 3.23 95% CI: 1.52 1.92 ∑AS Mean: 0.45 SD: 1.64 95% CI: 0.35 0.55
0.80 ∑AS Mean: 3.57 SD: 4.77 95% CI: 3.28 3.87 ∑AS Mean: 0.87 SD: 2.27 95% CI: 0.73 1.01
0.70 ∑AS Mean: 5.03 SD: 5.59 95% CI: 4.68 5.38 ∑AS Mean: 1.26 SD: 2.83 95% CI: 1.08 1.44
0.60 ∑AS Mean: 7.05 SD: 6.76 95% CI: 6.63 7.47 ∑AS Mean: 1.83 SD: 3.27 95% CI: 1.63 2.03
0.50 ∑AS Mean: 7.99 SD: 7.05 95% CI: 7.56 8.43 ∑AS Mean: 2.09 SD: 3.40 95% CI: 1.88 2.30
0.40 ∑AS Mean: 10.46 SD: 8.02 95% CI: 9.96 10.95 ∑AS Mean: 3.01 SD: 4.19 95% CI: 2.75 3.27
0.30 ∑AS Mean: 11.75 SD: 8.58 95% CI: 11.22 12.28 ∑AS Mean: 3.15 SD: 4.37 95% CI: 2.88 3.42
0.20 ∑AS Mean: 13.37 SD: 9.05 95% CI: 12.81 13.93 ∑AS Mean: 3.36 SD: 4.12 95% CI: 3.10 3.61
0.10 ∑AS Mean: 15.50 SD: 9.47 95% CI: 14.91 16.08 ∑AS Mean: 4.23 SD: 5.65 95% CI: 3.88 4.58

0.0001 ∑AS Mean: 16.77 SD: 10.16 95% CI: 16.14 17.40 ∑AS Mean: 4.72 SD: 5.57 95% CI: 4.37 5.06

LEGACY PROCESS CBM+ PROCESS

 

Table A9 displays the statistical summaries of simulation output for the time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when mean PC is 0.50 and the mean time until the replacement component arrives is 

3 days.  The parameters of the beta distribution are αB=25 and βB=25; the parameters of 

the Weibull distribution are αW=1.5 and βW=11.08.  The time until a replacement 

component arrives has an exponential distribution.   This is data for Figure 13. 

Table A9 
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PON HAND
0.9999 ∑AS Mean: 0.00 SD: 0.01 95% CI: 0.00 0.00 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 1.76 SD: 3.47 95% CI: 1.55 1.98 ∑AS Mean: 0.69 SD: 1.86 95% CI: 0.58 0.81
0.80 ∑AS Mean: 3.41 SD: 4.53 95% CI: 3.13 3.69 ∑AS Mean: 1.38 SD: 2.80 95% CI: 1.21 1.56
0.70 ∑AS Mean: 4.98 SD: 5.55 95% CI: 4.64 5.33 ∑AS Mean: 2.26 SD: 3.80 95% CI: 2.02 2.49
0.60 ∑AS Mean: 6.88 SD: 6.32 95% CI: 6.48 7.27 ∑AS Mean: 2.70 SD: 3.86 95% CI: 2.46 2.94
0.50 ∑AS Mean: 8.69 SD: 6.70 95% CI: 8.27 9.10 ∑AS Mean: 3.43 SD: 4.55 95% CI: 3.15 3.71
0.40 ∑AS Mean: 10.38 SD: 8.02 95% CI: 9.89 10.88 ∑AS Mean: 3.92 SD: 4.66 95% CI: 3.64 4.21
0.30 ∑AS Mean: 11.73 SD: 8.35 95% CI: 11.21 12.25 ∑AS Mean: 5.11 SD: 5.68 95% CI: 4.76 5.46
0.20 ∑AS Mean: 13.44 SD: 9.00 95% CI: 12.88 14.00 ∑AS Mean: 5.50 SD: 5.67 95% CI: 5.15 5.85
0.10 ∑AS Mean: 15.31 SD: 9.27 95% CI: 14.73 15.88 ∑AS Mean: 6.30 SD: 6.12 95% CI: 5.92 6.68

0.0001 ∑AS Mean: 17.16 SD: 10.06 95% CI: 16.53 17.78 ∑AS Mean: 6.77 SD: 6.14 95% CI: 6.39 7.15

LEGACY PROCESS CBM+ PROCESS

 

Table A10 displays statistical summaries of simulation output for the time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when mean PC is 0.20 and the mean time until the replacement component arrives is 

3 days.  The parameters of the beta distribution are αB=25 and βB=100; the parameters of 

the Weibull distribution are αW=1.5 and βW=11.08.  The time until a replacement 

component arrives has an exponential distribution.  This is data for Figure 14. 

Table A10 

PON HAND
0.9999 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 1.69 SD: 3.10 95% CI: 1.50 1.88 ∑AS Mean: 1.32 SD: 2.91 95% CI: 1.14 1.50
0.80 ∑AS Mean: 3.34 SD: 4.51 95% CI: 3.07 3.62 ∑AS Mean: 2.67 SD: 4.05 95% CI: 2.42 2.92
0.70 ∑AS Mean: 5.06 SD: 5.17 95% CI: 4.74 5.38 ∑AS Mean: 3.81 SD: 4.92 95% CI: 3.51 4.12
0.60 ∑AS Mean: 6.37 SD: 6.04 95% CI: 6.00 6.75 ∑AS Mean: 5.25 SD: 5.43 95% CI: 4.91 5.58
0.50 ∑AS Mean: 8.78 SD: 7.08 95% CI: 8.34 9.22 ∑AS Mean: 5.92 SD: 5.74 95% CI: 5.57 6.28
0.40 ∑AS Mean: 10.14 SD: 8.04 95% CI: 9.64 10.64 ∑AS Mean: 8.03 SD: 7.25 95% CI: 7.58 8.48
0.30 ∑AS Mean: 12.23 SD: 8.40 95% CI: 11.71 12.75 ∑AS Mean: 9.31 SD: 7.65 95% CI: 8.84 9.79
0.20 ∑AS Mean: 13.77 SD: 9.34 95% CI: 13.19 14.34 ∑AS Mean: 10.08 SD: 7.37 95% CI: 9.62 10.53
0.10 ∑AS Mean: 15.16 SD: 9.55 95% CI: 14.57 15.75 ∑AS Mean: 11.21 SD: 8.33 95% CI: 10.69 11.73

0.0001 ∑AS Mean: 17.16 SD: 10.53 95% CI: 16.51 17.81 ∑AS Mean: 12.42 SD: 8.69 95% CI: 11.88 12.96

LEGACY PROCESS CBM+ PROCESS

 

Table A11 displays the statistical summaries of simulation output for the  time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when PC is 0.99 and the mean time until the replacement component arrives is 10 

days.  The parameters of the beta distribution are αB=25 and βB=.25; the parameters of the 

Weibull distribution are αW=1.5 and βW=11.08.  The time until a replacement component 

arrives has an exponential distribution.  This is data for Figure 15. 

Table A11 

PON HAND
0.9999 ∑AS Mean: 0.00 SD: 0.12 95% CI: 0.00 0.01 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 9.44 SD: 13.44 95% CI: 8.60 10.27 ∑AS Mean: 6.67 SD: 11.20 95% CI: 5.98 7.36
0.80 ∑AS Mean: 17.45 SD: 19.30 95% CI: 16.25 18.64 ∑AS Mean: 12.49 SD: 14.44 95% CI: 11.59 13.38
0.70 ∑AS Mean: 27.42 SD: 23.59 95% CI: 25.95 28.88 ∑AS Mean: 19.50 SD: 18.93 95% CI: 18.33 20.67
0.60 ∑AS Mean: 36.92 SD: 27.18 95% CI: 35.23 38.60 ∑AS Mean: 25.90 SD: 23.77 95% CI: 24.43 27.37
0.50 ∑AS Mean: 42.93 SD: 29.17 95% CI: 41.12 44.74 ∑AS Mean: 33.20 SD: 25.91 95% CI: 31.60 34.81
0.40 ∑AS Mean: 53.36 SD: 33.14 95% CI: 51.30 55.41 ∑AS Mean: 40.31 SD: 29.13 95% CI: 38.51 42.12
0.30 ∑AS Mean: 64.97 SD: 36.21 95% CI: 62.72 67.21 ∑AS Mean: 46.02 SD: 31.59 95% CI: 44.06 47.98
0.20 ∑AS Mean: 73.09 SD: 38.88 95% CI: 70.68 75.50 ∑AS Mean: 52.48 SD: 31.03 95% CI: 50.55 54.40
0.10 ∑AS Mean: 80.22 SD: 40.80 95% CI: 77.69 82.75 ∑AS Mean: 60.02 SD: 34.32 95% CI: 57.90 62.15

0.0001 ∑AS Mean: 88.67 SD: 41.58 95% CI: 86.09 91.25 ∑AS Mean: 63.91 SD: 34.87 95% CI: 61.75 66.07

LEGACY PROCESS CBM+ PROCESS
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Table A12 displays the statistical summaries of simulation output for the  time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when PC is 0.50 and the mean time until the replacement component arrives is 10 

days.  The parameters of the beta distribution are αB=25 and βB=25; the parameters of the 

Weibull distribution are αW=1.5 and βW=11.08.  The time until a replacement component 

arrives has an exponential distribution.  This is data for Figure 16. 

Table A12 

PON HAND
0.9999 ∑AS Mean: 0.01 SD: 0.13 95% CI: 0.00 0.01 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 9.48 SD: 13.96 95% CI: 8.61 10.34 ∑AS Mean: 7.47 SD: 12.05 95% CI: 6.73 8.22
0.80 ∑AS Mean: 17.40 SD: 17.80 95% CI: 16.30 18.50 ∑AS Mean: 14.60 SD: 17.07 95% CI: 13.54 15.66
0.70 ∑AS Mean: 27.14 SD: 24.12 95% CI: 25.65 28.63 ∑AS Mean: 21.73 SD: 21.52 95% CI: 20.39 23.06
0.60 ∑AS Mean: 36.32 SD: 26.46 95% CI: 34.68 37.96 ∑AS Mean: 27.52 SD: 23.12 95% CI: 26.08 28.95
0.50 ∑AS Mean: 46.22 SD: 30.29 95% CI: 44.34 48.10 ∑AS Mean: 35.94 SD: 25.66 95% CI: 34.35 37.53
0.40 ∑AS Mean: 54.79 SD: 33.17 95% CI: 52.73 56.85 ∑AS Mean: 43.21 SD: 30.15 95% CI: 41.35 45.08
0.30 ∑AS Mean: 63.01 SD: 35.55 95% CI: 60.80 65.21 ∑AS Mean: 51.58 SD: 31.18 95% CI: 49.65 53.51
0.20 ∑AS Mean: 72.70 SD: 38.17 95% CI: 70.34 75.07 ∑AS Mean: 57.41 SD: 33.00 95% CI: 55.37 59.46
0.10 ∑AS Mean: 81.96 SD: 39.36 95% CI: 79.52 84.40 ∑AS Mean: 65.56 SD: 36.87 95% CI: 63.28 67.85

0.0001 ∑AS Mean: 89.19 SD: 42.49 95% CI: 86.56 91.83 ∑AS Mean: 71.63 SD: 38.87 95% CI: 69.22 74.04

LEGACY PROCESS CBM+ PROCESS

 

Table A13 displays the statistical summaries of simulation output for the  time awaiting 

replacement components as a result of 1,250 missions (5,000 flight hours) while varying 

POH when PC is 0.20 and the mean time until the replacement component arrives is 10 

days.  The parameters of the beta distribution are αB=25 and βB=100; the parameters of 

the Weibull distribution are αW=1.5 and βW=11.08.  The time until a replacement 

component arrives has an exponential distribution.  This is data for Figure 17. 

Table A13 

PON HAND
0.9999 ∑AS Mean: 0.00 SD: 0.04 95% CI: 0.00 0.00 ∑AS Mean: 0.00 SD: 0.00 95% CI: 0.00 0.00
0.90 ∑AS Mean: 9.34 SD: 13.18 95% CI: 8.53 10.16 ∑AS Mean: 8.54 SD: 12.64 95% CI: 7.76 9.33
0.80 ∑AS Mean: 18.52 SD: 20.35 95% CI: 17.25 19.78 ∑AS Mean: 15.59 SD: 17.45 95% CI: 14.51 16.67
0.70 ∑AS Mean: 27.17 SD: 23.59 95% CI: 25.70 28.63 ∑AS Mean: 24.82 SD: 22.59 95% CI: 23.42 26.22
0.60 ∑AS Mean: 35.22 SD: 26.04 95% CI: 33.60 36.83 ∑AS Mean: 33.89 SD: 26.58 95% CI: 32.24 35.54
0.50 ∑AS Mean: 44.64 SD: 29.66 95% CI: 42.80 46.47 ∑AS Mean: 41.84 SD: 29.17 95% CI: 40.03 43.64
0.40 ∑AS Mean: 55.17 SD: 33.73 95% CI: 53.08 57.26 ∑AS Mean: 50.15 SD: 31.35 95% CI: 48.21 52.10
0.30 ∑AS Mean: 64.12 SD: 35.57 95% CI: 61.92 66.33 ∑AS Mean: 59.46 SD: 34.52 95% CI: 57.32 61.60
0.20 ∑AS Mean: 72.38 SD: 37.69 95% CI: 70.04 74.71 ∑AS Mean: 67.09 SD: 37.19 95% CI: 64.78 69.39
0.10 ∑AS Mean: 81.59 SD: 40.41 95% CI: 79.09 84.10 ∑AS Mean: 73.96 SD: 36.69 95% CI: 71.68 76.23

0.0001 ∑AS Mean: 89.03 SD: 41.85 95% CI: 86.44 91.62 ∑AS Mean: 81.51 SD: 40.35 95% CI: 79.01 84.01

LEGACY PROCESS CBM+ PROCESS
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